京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据要开拓的下一个疆域是个人
大数据和个人数据正汇集到一起,构筑互联网上最令人惊叹的消费者产品。它们会预测你的需要,存储你的记忆——如果你允许它们这么做的话。
你会用你的个人数据换取对未来的一瞥吗?安德烈亚斯·韦恩德(Andreas Weigend)就这么做了。
韦恩德曾是亚马逊网站的首席科学官,现任斯坦福大学社会数据实验室主管。他给我说了一个他自己的故事。某天,他在天亮时分醒来,准备去机场搭乘从上海飞来的航班。这时,他刚开始使用的应用程序Google Now告诉他,这趟航班延误了。
这个软件会在用户的Gmail邮箱、日程表,以及地图和航班时刻表之类的数据库里四下查看。它在韦恩德的出行计划中发现了这个小差错,于是提醒他不需要赶时间。韦恩德登机时,飞机上的其他人都已经在机场枯坐了好几个小时,要等飞机的一个备用部件运抵。
韦恩德提供消费者行为方面的咨询,也就这些内容授课。他语速很快。对他来说,他经历的这类小插曲显示了“一个基于10倍数据的社会所具有的能力”。他说,如果上个世纪的标志性成就是对有形物质互动的观察能力(想想X光和雷达技术),那么本世纪的标志性能力将是通过人们与他人分享的个人数据来研究他们。
像Google Now这样所谓的预期系统是未来技术的例子之一。我们已经看到了大数据给广告这类可以一次测量数百万人的行为的业务所带来的转变。现在数据科学家们正在思考大数据如何能够帮助个人。及时通知一架联航班机的飞行情况可能是比较乏味的应用之一。但是,想象一下这样的数据模式:它能告诉你该找什么工作,或者在你感觉不适之前就提醒你可能感冒了。
计算机能够获得的个人数据正在极大膨胀,推动了这样的趋势。根据咨询公司IDC的统计,全世界创造的数字数据每两年增加一倍,而其中大部分是由消费者生成的:电影下载、IP语音电话、电子邮件、手机位置显示等等。但其中仅有约0.5%的数据被分析过。
“存在着那么多数据可以拿来服务于个人的需要,而且是可负担的,”在伦敦大学学院研习社交网络的数据学家帕特里克·沃尔夫(Patrick Wolfe)说,“统计学的优势来自于把人们汇集在一起,但这之后,锦上添花的事是把你的发现个人化。”
谷歌、Facebook、LinkedIn这些硅谷的数据精炼厂把合并大数据和个人数据作为一个目标已经有些日子了。这种合并创造出广告商可以使用的工具,也创造出尤其“让人上瘾”的产品。毕竟,有什么比你自己更有趣呢?Facebook告诉你谁可能是你的朋友。你给Google Now的数据越多,它会为你服务得更好。
暴露更多个人数据似乎无可避免。韦恩德说,随着装载了加速器、摄像头和GPS的智能手机的销量大增,“人们已经获得了收集和传送个人数据的装备”。而这可能只是刚开始。已经有一小批技术爱好者发起了“自我量化”运动:在自己身上装上传感器、计步器,甚至植入葡萄糖监测器。在本期商业报告中,我们将介绍搜索引擎Wolfram Alpha的创造者斯蒂芬·沃尔弗拉姆(Stephen Wolfram)。沃尔弗拉姆参与一个大型的自我跟踪项目已有多年。他把自己的电子邮件、敲击电脑键盘,甚至身体运动的情况都记录归档。他对预测性应用程序感兴趣,称它们为“个人分析”。他认为,就像他的搜索引擎试图组织、整理全世界所有的事实,“在个人分析中,你需要做的是试着把某个人的人生方方面面的信息聚集起来。”
沃尔弗拉姆说,现有的障碍是一些最有用的数据没被捕捉到,至少不能被轻易获得。部分原因是技术上的:缺乏整合。但大量数据是由Facebook、苹果和Fitbit(一个流行的计步器的生产商)这类私人公司存储着。现在,个人数据的价值日益显见,争端正在酝酿中。加州议员们今年提出了“知情权”(Right to Kow)法案,要求公司向个人公布他们储藏的“个人信息”,也就是每次追踪方位和IP地址的数字拷贝。
这项法案是要求隐私保护和问责的社会运动的一部分。与此同时,它也对数据提供者和数据运用者之间的经济关系做出了重新安排。人们想更多地从大数据直接获益,对此业界做出了怎样的回应?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19