京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据学习离我们从未如此之近
2015年初,大数据领域公认权威、百万级超级畅销书《大数据时代》作者、牛津大学互联网研究所迈尔-舍恩伯格教授的新作《与大数据同行:学习和教育的未来》的中文版在国内出版,该书以浅显易懂的语言讲述了最前沿的理念——大数据将如何改变教育。
书中指出,大数据正悄悄影响到教育体系的每个层面,对于全世界的学习与教育活动,都会产生极为深远的影响。他用MOOC、可汗学院、Duolingo语言教育等案例,论证了蓬勃发展的在线教育领域产生了大数据,教育不只是“你讲我听”、考试评分或是选修科目更多而已。历史上第一次,我们拥有了强大、具有实证效果的工具,能够空前的看到学习的过程,破解过去不可能发现的重重学习阻碍,让教育可以实现“私人定制”,改善学习的成效。教师的工作不但不会被网络视频所代替,还会变得更高效,更有趣,学校和政府部门也能用更低的成本提供更多的教育机会。在这一刻,我们可以清晰地看到:一个全新的教育时代正在到来!
2015年10月10日,记忆工场在中国北京发布了Memoryer 3.0神经网络英语单词学习记忆系统(www.memoryer.com),相比于以前的系统,新版本采用了大型游戏引擎Unity 3D平台设计,实现了PC、iOS、Android系统的跨平台,从而便于用户在电脑和手机的共线学习。更大的变化,是3.0版本首次向教师开放了用于分析评估学生学习过程的后台大数据指标,包括 “学习进度与效率指标”、“记忆力指标”、“注意力指标”、“用功度指标”、“测试指标”等,一共32组指标,依靠这些数据,教师能够极其精确地评价使用者个体的全部学习行为、记忆倾向和遗忘程度,并可将其与整个班级的整体指标相比较。
如果再加上Memoryer一直以来受人推崇的人工智能认识记忆算法和人工智能虚拟教师,该系统实际上已经实现了迈尔-舍恩伯格在书中所说的大数据学习的过程:“与大数据同行的学习意味着两种迥异的学习过程。对于学生而言,他们是在一个同样也在向他们学习的体系中学习着课程。这一体系知道学生何时需要加倍依赖于概念,知道何时需要继续往下学习,还知道如何让学生在每一天中平衡“温故”和“知新”。这些学生是在伴随着大数据而学习,因为在他们所身处的系统之中,有关他们如何从事与他人和课程目标相关之事的证据,可以在分秒之中产生,而不是需要一个学期和一个学年才能出现”。
自从2012年记忆工场在世界范围内首次提出了人类神经元学习记忆的四度模型--LRRP模型(即学-记-忆-习模式)以来,记忆工场一直被人们认为是“掌握认知学习底层技术”的一家顶尖的科研机构,该机构从计算神经科学的角度,使用数学分析和计算机模拟的方法在不同水平上对神经系统进行模拟和研究。其商业化的第一个产品Memoryer神经网络单词学习记忆系统自面世以来,一直被业内所关注。
记者了解到,Memoryer学习记忆系统目前已经在北京、上海、山东、山西、陕西、内蒙、新疆等地的公立初高中学校进行了大量的对比试验和推广,所有学生均实现了“6小时掌握一学期单词”,同时在英语单词的听力、语法、默写等抗遗忘方面取得了超乎预料的理想效果,不但极大地节省了学生用于背单词的时间,而且在英语考试提分方面成绩显著。对于记忆工场的科学家们来讲,让他们兴奋的不仅仅是这个,而是在此过程中从后台获得的大量认知记忆过程的大数据,为下一步采用集体学习进化算法进一步优化记忆引擎奠定了扎实数据积累。
在人们以为大数据学习是基于一种概念一个设想的时候,记忆工场已经在这个方向上持续领跑。一个越来越清晰的双回路学习(double-loop learning)方式已经走向从最初的实践探索,向进一步成熟发展。
迈尔-舍恩伯格在《与大数据同行:学习和教育的未来》写道:“我们第一次要求自己拥有理解学生正在做什么的能力。我们能够理解在最大规模情况下学生是如何学习的,理解在任何给定的学年中数以百万计的各种数据。我们能够理解在最小规模情况下学生是如何学习的,理解每一个个体在10分钟的课程中是如何学习的,而不只是每一个个体是如何学习的。不同于旧有的调查世界和样本,我们能够连接上述两类规模——大数据是数以亿万计的小数据的汇集。”
而对于记忆工场来讲,这已经不是未来,Memoryer 3.0神经网络学习记忆系统的推出,已经实现了迈尔-舍恩伯格的上述表述,代表着我国在大数据学习应用领域已经与国际先进水平处于同一起跑点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17