京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据学习离我们从未如此之近
2015年初,大数据领域公认权威、百万级超级畅销书《大数据时代》作者、牛津大学互联网研究所迈尔-舍恩伯格教授的新作《与大数据同行:学习和教育的未来》的中文版在国内出版,该书以浅显易懂的语言讲述了最前沿的理念——大数据将如何改变教育。
书中指出,大数据正悄悄影响到教育体系的每个层面,对于全世界的学习与教育活动,都会产生极为深远的影响。他用MOOC、可汗学院、Duolingo语言教育等案例,论证了蓬勃发展的在线教育领域产生了大数据,教育不只是“你讲我听”、考试评分或是选修科目更多而已。历史上第一次,我们拥有了强大、具有实证效果的工具,能够空前的看到学习的过程,破解过去不可能发现的重重学习阻碍,让教育可以实现“私人定制”,改善学习的成效。教师的工作不但不会被网络视频所代替,还会变得更高效,更有趣,学校和政府部门也能用更低的成本提供更多的教育机会。在这一刻,我们可以清晰地看到:一个全新的教育时代正在到来!
2015年10月10日,记忆工场在中国北京发布了Memoryer 3.0神经网络英语单词学习记忆系统(www.memoryer.com),相比于以前的系统,新版本采用了大型游戏引擎Unity 3D平台设计,实现了PC、iOS、Android系统的跨平台,从而便于用户在电脑和手机的共线学习。更大的变化,是3.0版本首次向教师开放了用于分析评估学生学习过程的后台大数据指标,包括 “学习进度与效率指标”、“记忆力指标”、“注意力指标”、“用功度指标”、“测试指标”等,一共32组指标,依靠这些数据,教师能够极其精确地评价使用者个体的全部学习行为、记忆倾向和遗忘程度,并可将其与整个班级的整体指标相比较。
如果再加上Memoryer一直以来受人推崇的人工智能认识记忆算法和人工智能虚拟教师,该系统实际上已经实现了迈尔-舍恩伯格在书中所说的大数据学习的过程:“与大数据同行的学习意味着两种迥异的学习过程。对于学生而言,他们是在一个同样也在向他们学习的体系中学习着课程。这一体系知道学生何时需要加倍依赖于概念,知道何时需要继续往下学习,还知道如何让学生在每一天中平衡“温故”和“知新”。这些学生是在伴随着大数据而学习,因为在他们所身处的系统之中,有关他们如何从事与他人和课程目标相关之事的证据,可以在分秒之中产生,而不是需要一个学期和一个学年才能出现”。
自从2012年记忆工场在世界范围内首次提出了人类神经元学习记忆的四度模型--LRRP模型(即学-记-忆-习模式)以来,记忆工场一直被人们认为是“掌握认知学习底层技术”的一家顶尖的科研机构,该机构从计算神经科学的角度,使用数学分析和计算机模拟的方法在不同水平上对神经系统进行模拟和研究。其商业化的第一个产品Memoryer神经网络单词学习记忆系统自面世以来,一直被业内所关注。
记者了解到,Memoryer学习记忆系统目前已经在北京、上海、山东、山西、陕西、内蒙、新疆等地的公立初高中学校进行了大量的对比试验和推广,所有学生均实现了“6小时掌握一学期单词”,同时在英语单词的听力、语法、默写等抗遗忘方面取得了超乎预料的理想效果,不但极大地节省了学生用于背单词的时间,而且在英语考试提分方面成绩显著。对于记忆工场的科学家们来讲,让他们兴奋的不仅仅是这个,而是在此过程中从后台获得的大量认知记忆过程的大数据,为下一步采用集体学习进化算法进一步优化记忆引擎奠定了扎实数据积累。
在人们以为大数据学习是基于一种概念一个设想的时候,记忆工场已经在这个方向上持续领跑。一个越来越清晰的双回路学习(double-loop learning)方式已经走向从最初的实践探索,向进一步成熟发展。
迈尔-舍恩伯格在《与大数据同行:学习和教育的未来》写道:“我们第一次要求自己拥有理解学生正在做什么的能力。我们能够理解在最大规模情况下学生是如何学习的,理解在任何给定的学年中数以百万计的各种数据。我们能够理解在最小规模情况下学生是如何学习的,理解每一个个体在10分钟的课程中是如何学习的,而不只是每一个个体是如何学习的。不同于旧有的调查世界和样本,我们能够连接上述两类规模——大数据是数以亿万计的小数据的汇集。”
而对于记忆工场来讲,这已经不是未来,Memoryer 3.0神经网络学习记忆系统的推出,已经实现了迈尔-舍恩伯格的上述表述,代表着我国在大数据学习应用领域已经与国际先进水平处于同一起跑点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28