京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Andrieux说:“由于互联网上人类和机器的活动,造成非结构化数据爆炸式增长,推动了Hadoop的兴起。非结构化数据存在巨大的价值,但通 过以往类似SQL的索引技术几乎不可能挖掘出有意义的信息。大数据生态圈中Hadoop和类似工具为工程师提供从非结构化数据中创建结构化数据的能力,在 大规模分布式范围内获取有价值的业务洞察力。
就业市场比较看好熟悉Hadoop这类大数据工具(如Cassandra、CouchDB、MongoDB、Riak等)的求职者。
我们又邀请Andrieux深入挖掘过去的求职热点问题,了解当前具有Hadoop技能以及相关专业知识的IT人士面临的就业现状。
当被问到公司招聘具备Hadoop技能的IT人员都有哪些要求时,Andrieux 回答,“经验是最重要的”。当你渴望找到一份与数据相关工作时,你也就迈进了竞争残酷的就业市场——虽然你总有一天会积累起经验,但是此刻才最重要。
假如你有必要的经验,那就要适当地展示出来。
Andrieux说:“我们客户中的那些初创公司正在寻找可以将大数据运用到实际生产中的工程师,仅仅展示还是不够的,最好能有在大公司的项目实践经验。”
对于年轻IT求职者或者经验丰富但想要学习新技能的IT人士,Andrieux推荐了两个方法:专业培训和认证、参加当地的行业聚会。
Andrieux建议:“如果有人想要进入大数据领域和学习Hadoop,我建议参加像Cloudera和Hortonworks这样大公司提供的Hadoop专业培训并通过相关认证。”这些培训给工程师们提供实践经验,而且通常可以得到该领域专家的指导。
当地行业组织为求职者们提供另一种教育,还有重要的社交机会。Andrieux说:“例如:theBay区(Riviera Partners公司所在地)周围的聚会群体每周或每月都有聚会,广泛讨论面向数据的主题,这些聚会的发言者往往是有影响力的行业领袖,在该领域有丰富的 经验并且能够提供最佳实践建议。聚会中有大量的交流机会,可以认识很多数据专家。”
在简历、履历和其他求职文件中,一些专业词汇和术语往往能够吸引招聘人员和人事经理的眼球。Andrieux提供的三个有代表性的例子:大规模设计和建造可扩展性分布式数据存储、系统和管道;实现xxxx节点的Hadoop集群;从零开始或者从底层开始构建。
如果你在找工作,目光不要过于狭隘——切记大数据相关的职位有各种各样形式,而且有些工作看起来与Hadoop相关,实际却只是一种伪装。Andrieux说:“常见的数据工程师甚至像后端工程师这样的职位也是与Hadoop相关的工作。”
Andrieux注意到Hadoop是一个相对年轻的技术,和整个大数据行业一样。因此,要想在大数据行业或者相关行业得到较好的发展,及时关注最新的行业趋势和变化特别重要。
坚持关注数据大会,比如Strate和Hadoop峰会。Andrieux说:“关注这些数据大会都是非常有利于了解行业前沿技术,在这些会议上会 有很多著名的企业参加。关注行业领袖们在他们公司网站上的博客,了解一些数据大会上的重要演讲,不要害怕与招聘者谈论行业发展趋势,只是我们看行业趋势要 比公众更具前瞻性。”
可以肯定的是,Hadoop仍然热门,但Andrieux指出:Hadoop不是应对数据指数型增长的唯一平台或技能。“Hadoop不是市场应对数据需求的唯一选择,关注一下应对大数据的不同技术,问问周围其他人在用哪些技术,有什么样的优点和缺点。”
大数据行业发展得越来越好,企业不惜重金聘请数据分析师,“学习Hadoop,找好工作不是梦想”的口号激励着无数同学投身大数据事业,只有自己充分了解这行业你才能掌握主动权。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12