京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Andrieux说:“由于互联网上人类和机器的活动,造成非结构化数据爆炸式增长,推动了Hadoop的兴起。非结构化数据存在巨大的价值,但通 过以往类似SQL的索引技术几乎不可能挖掘出有意义的信息。大数据生态圈中Hadoop和类似工具为工程师提供从非结构化数据中创建结构化数据的能力,在 大规模分布式范围内获取有价值的业务洞察力。
就业市场比较看好熟悉Hadoop这类大数据工具(如Cassandra、CouchDB、MongoDB、Riak等)的求职者。
我们又邀请Andrieux深入挖掘过去的求职热点问题,了解当前具有Hadoop技能以及相关专业知识的IT人士面临的就业现状。
当被问到公司招聘具备Hadoop技能的IT人员都有哪些要求时,Andrieux 回答,“经验是最重要的”。当你渴望找到一份与数据相关工作时,你也就迈进了竞争残酷的就业市场——虽然你总有一天会积累起经验,但是此刻才最重要。
假如你有必要的经验,那就要适当地展示出来。
Andrieux说:“我们客户中的那些初创公司正在寻找可以将大数据运用到实际生产中的工程师,仅仅展示还是不够的,最好能有在大公司的项目实践经验。”
对于年轻IT求职者或者经验丰富但想要学习新技能的IT人士,Andrieux推荐了两个方法:专业培训和认证、参加当地的行业聚会。
Andrieux建议:“如果有人想要进入大数据领域和学习Hadoop,我建议参加像Cloudera和Hortonworks这样大公司提供的Hadoop专业培训并通过相关认证。”这些培训给工程师们提供实践经验,而且通常可以得到该领域专家的指导。
当地行业组织为求职者们提供另一种教育,还有重要的社交机会。Andrieux说:“例如:theBay区(Riviera Partners公司所在地)周围的聚会群体每周或每月都有聚会,广泛讨论面向数据的主题,这些聚会的发言者往往是有影响力的行业领袖,在该领域有丰富的 经验并且能够提供最佳实践建议。聚会中有大量的交流机会,可以认识很多数据专家。”
在简历、履历和其他求职文件中,一些专业词汇和术语往往能够吸引招聘人员和人事经理的眼球。Andrieux提供的三个有代表性的例子:大规模设计和建造可扩展性分布式数据存储、系统和管道;实现xxxx节点的Hadoop集群;从零开始或者从底层开始构建。
如果你在找工作,目光不要过于狭隘——切记大数据相关的职位有各种各样形式,而且有些工作看起来与Hadoop相关,实际却只是一种伪装。Andrieux说:“常见的数据工程师甚至像后端工程师这样的职位也是与Hadoop相关的工作。”
Andrieux注意到Hadoop是一个相对年轻的技术,和整个大数据行业一样。因此,要想在大数据行业或者相关行业得到较好的发展,及时关注最新的行业趋势和变化特别重要。
坚持关注数据大会,比如Strate和Hadoop峰会。Andrieux说:“关注这些数据大会都是非常有利于了解行业前沿技术,在这些会议上会 有很多著名的企业参加。关注行业领袖们在他们公司网站上的博客,了解一些数据大会上的重要演讲,不要害怕与招聘者谈论行业发展趋势,只是我们看行业趋势要 比公众更具前瞻性。”
可以肯定的是,Hadoop仍然热门,但Andrieux指出:Hadoop不是应对数据指数型增长的唯一平台或技能。“Hadoop不是市场应对数据需求的唯一选择,关注一下应对大数据的不同技术,问问周围其他人在用哪些技术,有什么样的优点和缺点。”
大数据行业发展得越来越好,企业不惜重金聘请数据分析师,“学习Hadoop,找好工作不是梦想”的口号激励着无数同学投身大数据事业,只有自己充分了解这行业你才能掌握主动权。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29