
大数据,助推电影票房的神器
大数据的话题,在电影业越炒越热。大数据可以预测票房,还能通过剧本预估票房体量。请关注——
今年中秋+国庆的“双节”档,电影再次扎堆上映。喜剧片《港囧》、魔幻片《九层妖塔》、警匪片《解救吾先生》等十几部中外影片“跃跃欲试”,盯准了这块假日大蛋糕。
蛋糕有多大?6月在上海电影节的现场,嘉宾们为“双节”期间的票房大盘给出了17亿到20亿的“估值”。
各家影片能分到多少?这不是一个全凭运气的“猜谜游戏”。实际上,票房的体量,完全可以在数据分析的帮助下进行预测。
在中国电影票房数据每年都在拔节生长的今天,娱乐产业数据服务机构“ABD爱梦娱乐”创始人雷鸣认为,在其他商业领域已经大展身手多年的大数据,早该用于电影产业。“数据化运营和决策一定是未来的趋势”。
人人都谈大数据
前不久,电影《捉妖记》以24.26亿的成绩,拿下中国影史票房冠军。
《捉妖记》上映前一周,雷鸣就在办公室的白板上写下:捉妖记,票房18亿起。
“典型的合家欢电影,还遵循了好莱坞式工业化制作流程,适用于所有社交场景,一定大卖。”雷鸣做出了这样的判断,而支撑判断的,是公司一套基于影视数据的票房预测模型。
大数据用于电影,早已不是一个新鲜话题。
最为人津津乐道的,就是郭敬明执导的《小时代》系列。在投资之前,电影出品发行方就在文学网站上对同名原著的点击量、点击用户身份进行了调研,并分析出了影片可能存在的核心目标受众。确定“标靶”之后,电影宣发方制定了一系列有针对性的营销活动,把他们圈定的用户“导入”电影院。
今年的上海电影节,同样也为大数据和电影开辟了专门的讨论时段。
导演兼演员身份的徐峥在“大数据助推大电影”的主题论坛上表示,大数据可以在电影生产制作的全流程发挥作用。
在选择电影题材的时候,可以借助大数据估计这部电影的票房量级、投资风险;剧本完成之后,可以根据一套评估系统来预估剧本的票房潜力,设置笑点、雷点,丰满人物个性。甚至找谁来演,什么样的演员组合能够最大限度撬动市场;拍好了之后具体营销组合拳怎么打……大数据都可以介入。
影视数据质量还不高
ABD爱梦娱乐主要用数据做三件事:精确预测即将上映的电影的票房(预测值与实际票房差距不超过20%视为准确);通过电影剧本预测票房区间;验证一个IP(Intellectual Property)是否适合改编成院线电影,同时也用数据来帮助公司的剧本创作团队完成IP内容开发。
影视大数据平台艺恩研究总监袁琳告诉科技日报记者,大数据确实可以在从电影立项制作到影片营销宣发的诸多环节发挥作用,不过现在的问题是,关于用户的数据积累还不够。“用户在线下购票的话,我们没法准确地知道这些人究竟是谁,得不到他们的人口统计学数据。”依赖影院的线下售票系统,很难描绘出清晰的用户画像。好消息是,近几年来,线上购票的行为增多,这些有迹可循的购买行为,可以帮助片方定位“观众是谁”。
在雷鸣看来,不仅线上的数据不够,线下的数据积累年头也太短。美国上世纪30年代就开始系统地记录电影数据,而中国的影视数据,现在还很难用“大”来形容。“真正无断点的系统记录其实是从2011年开始的,到现在为止也不到5年。”而且,由于市场高速发展,我国电影每年的数据都没有“遗传性”,很难找到所谓的“规律”。
能获得的数据,是全然真实的吗?也未必。个别地方存在票房造假的情况;有一些数据,则被视为秘密,比如电影真正的投资额;还有些数据半真半假,比如社交网络的播放数据、点赞和好评量,需要分析者拧干水分。
“数据整理对影视市场有利无害。”雷鸣说,影视行业“看起来很美”,但水也很深。目前,数据公司们也等待着中国电影市场能变得更加成熟,沉淀下更多的、具有分析价值的结构化数据。
上帝的归上帝 凯撒的归凯撒
搜狐视频前首席运营官刘春曾提醒,在大数据时代不要忘记艺术创作的重要性。用大数据指导电影,难免引发质疑,认为它搅浑了艺术这池清水,让电影显得太过功利化。
袁琳觉得,没必要把商业和艺术摆在互相矛盾的位置。“没有市场,就没有你艺术表达的阵地。从某种意义上来讲,市场是阵地,是基础。我们可以通过数据找到一些规律性的东西,这也不妨碍我们用精彩的创意表达出来。大数据之于电影,扮演的是“助推器”的角色。袁琳指出,它不该也无法主导电影的创作,它只能帮助拉近电影和市场的距离。
雷鸣也有类似的观点。他坦言,电影具有商品属性,充分了解并无限接近商品的受众和市场,对商品来说“天经地义”。不过,这并不意味着艺术创作就成为大数据分析结果的“附庸”。他强调,大数据不能指导具体内容。当影片的大致方向确定之后,编剧应该具有完全的自主权,自由运用他们的灵感和思维技巧进行创作。“大数据用来帮助提高效率、降低成本。我们一直在说的一句话,就是上帝的归上帝,凯撒的归凯撒。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16