
数据驱动世界 广电如何使用大数据
数据驱动世界”,未来30年,因为数据经济,人类社会将会迎来巨大的变革,广电产业自然也不例外。在现阶段,广电媒体可以这样使用大数据。
节目播出前的大数据
用大数据进行平台定位与选择
比如,一档音乐类节目,制作公司在选择视频网站与省级卫视的组合时,需要打通台网数据进行对比分析,看两个平台在观众年龄、分布地域、观众兴趣方面各自的特点,从而判断是采取强强联合,还是采取互补的策略。
2014年某视频网站与央视一起做了一档魔术类真人秀节目,节目播出后带动了央视观众的年轻化,但是视频网站的效果却表现平平。这就是由于台网受众的年龄层与喜好不同导致的。尽管二者没有直接的用户竞争,但也意味着很难发挥协同效应。
用大数据进行收视预测与资源优化
由于台网数据的存在,这些大数据全程监控节目生产过程,一改原来广电的数据“事后诸葛亮”的形象,向生产前端延伸,为节目收视预测以及资源优化提供支持。
Netflix除了在内容制作、投资层面,在播出层面,也善于运用大数据对平台资源进行优化配置。比如,当Netflix通过计算得知某一地区 当天热播的影片名字,就会提前预备好片源,并配备高速闪存驱动,而其它不火的内容,则会存放在相对廉价和低速的硬盘里。这样提高了用户的观剧体验,也节省 了公司的成本。
节目制作中的大数据
节目嘉宾的选择——用大数据实现“嘉宾”的选角与裁定
一般对明星的评价指数由以下指标构成:演员参演的电视剧每日播放量、相关微博数据、相关贴吧数据、相关豆瓣数据、相关搜索数据等,并且每项赋予不同的权重,最终得出分值。
节目话题的选择——用大数据作为节目”话题“与板块
比如中央台“两会”期间,每天在《新闻联播》中安排4分钟的专题栏目《两会解码——两会大数据》,用百度、腾讯的全球大数据平台的实时数据,向观众解读当天的热门话题。这种报道方式,将成为电视节目发展的一个方向。
节目桥段的编排——用大数据反哺节目制作与植入
通过分析节目收视较高的桥段,为下期节目的制作提供更多的依据,同时,对桥段的大数据分析也有利于广告主对植入效果进行分析。
《爸爸去哪儿》某期中,陆毅抢喝女儿牛奶、费曼落水等环节都是收视数据相对较高的情节。从中可以看出,展现每个人物性格特点、与人物荧幕形象相反、出乎意料之外的情节更容易引起人们的关注。对于这种采用边拍边播的节目,大数据的分析为节目优化提供了可能。
大数据在节目运营中的应用
所有的大数据的运用,归根到底是对用户行为的挖掘。大数据使得影视作品生产的每一个环节都与用户息息相关,广电媒体可以利用这些数据信息打造用户喜爱的节目,也可以将数据作为售卖的工具,帮助广告主进行精准营销,换回真金白银。
互联网上用户的标签数量大、种类多,值得转型中的广电传媒借鉴。麦包包网就声称每个顾客的标签多达256个。用户标签系统一般分为基础属性、行 为属性与购买属性三类。基础性标签包括用户的年龄、地域、星座、收入、注册信息等;行为标签包括了用户的访问路径、访问时间等信息;购买标签则有用户消费 的频率、品牌偏好等维度。
打标签的好处在于对用户市场的深度挖掘。当我们谈论一档节目的目标用户时,不仅仅是年轻人还是老年人的区别,是北方人还是南方人的口味,还能进一步细分到200多个差异的点,这些用户的维度与内容、广告交叉分析,会有无限想象的空间。
对用户打好标签后,对不同标签进行排列组合,形成用户偏好矩阵。这样做的好处在于,如果单个用户喜欢看某种类型的节目,那么所在矩阵同样标签的 人观看的机率也会高,从而进行个性化的推介。这种大数据进行用户矩阵分析的方式,为用户提供了方便,提升了观影体验。视频网站的“追星族”产品,以明星为 维度划分粉丝群,并对他们的观影行为进行整合分析,就是这个理论的实际应用。
节目在创意之初,就应能以精准、统一的用户定位,来设定内容环节与广告。比如,将企业目标用户,作为节目的潜在观众群予以研究,分析他们的观影兴趣、与明星偏好,从而设置节目情节、选择节目要素进行编排、设计商业模式。
多家视频网站用视链技术,将用户喜欢的内容与电商结合实现一边观看一边点击购买“节目+电商”模式;东方卫视《女神的新衣》在节目模式部分也打造了内容即产品、观众即用户的理念,播出之后,买手伊芙丽旗舰店访客较之前增长100%,成交额增长50%。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01