京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据驱动世界 广电如何使用大数据
数据驱动世界”,未来30年,因为数据经济,人类社会将会迎来巨大的变革,广电产业自然也不例外。在现阶段,广电媒体可以这样使用大数据。
节目播出前的大数据
用大数据进行平台定位与选择
比如,一档音乐类节目,制作公司在选择视频网站与省级卫视的组合时,需要打通台网数据进行对比分析,看两个平台在观众年龄、分布地域、观众兴趣方面各自的特点,从而判断是采取强强联合,还是采取互补的策略。
2014年某视频网站与央视一起做了一档魔术类真人秀节目,节目播出后带动了央视观众的年轻化,但是视频网站的效果却表现平平。这就是由于台网受众的年龄层与喜好不同导致的。尽管二者没有直接的用户竞争,但也意味着很难发挥协同效应。
用大数据进行收视预测与资源优化
由于台网数据的存在,这些大数据全程监控节目生产过程,一改原来广电的数据“事后诸葛亮”的形象,向生产前端延伸,为节目收视预测以及资源优化提供支持。
Netflix除了在内容制作、投资层面,在播出层面,也善于运用大数据对平台资源进行优化配置。比如,当Netflix通过计算得知某一地区 当天热播的影片名字,就会提前预备好片源,并配备高速闪存驱动,而其它不火的内容,则会存放在相对廉价和低速的硬盘里。这样提高了用户的观剧体验,也节省 了公司的成本。
节目制作中的大数据
节目嘉宾的选择——用大数据实现“嘉宾”的选角与裁定
一般对明星的评价指数由以下指标构成:演员参演的电视剧每日播放量、相关微博数据、相关贴吧数据、相关豆瓣数据、相关搜索数据等,并且每项赋予不同的权重,最终得出分值。
节目话题的选择——用大数据作为节目”话题“与板块
比如中央台“两会”期间,每天在《新闻联播》中安排4分钟的专题栏目《两会解码——两会大数据》,用百度、腾讯的全球大数据平台的实时数据,向观众解读当天的热门话题。这种报道方式,将成为电视节目发展的一个方向。
节目桥段的编排——用大数据反哺节目制作与植入
通过分析节目收视较高的桥段,为下期节目的制作提供更多的依据,同时,对桥段的大数据分析也有利于广告主对植入效果进行分析。
《爸爸去哪儿》某期中,陆毅抢喝女儿牛奶、费曼落水等环节都是收视数据相对较高的情节。从中可以看出,展现每个人物性格特点、与人物荧幕形象相反、出乎意料之外的情节更容易引起人们的关注。对于这种采用边拍边播的节目,大数据的分析为节目优化提供了可能。
大数据在节目运营中的应用
所有的大数据的运用,归根到底是对用户行为的挖掘。大数据使得影视作品生产的每一个环节都与用户息息相关,广电媒体可以利用这些数据信息打造用户喜爱的节目,也可以将数据作为售卖的工具,帮助广告主进行精准营销,换回真金白银。
互联网上用户的标签数量大、种类多,值得转型中的广电传媒借鉴。麦包包网就声称每个顾客的标签多达256个。用户标签系统一般分为基础属性、行 为属性与购买属性三类。基础性标签包括用户的年龄、地域、星座、收入、注册信息等;行为标签包括了用户的访问路径、访问时间等信息;购买标签则有用户消费 的频率、品牌偏好等维度。
打标签的好处在于对用户市场的深度挖掘。当我们谈论一档节目的目标用户时,不仅仅是年轻人还是老年人的区别,是北方人还是南方人的口味,还能进一步细分到200多个差异的点,这些用户的维度与内容、广告交叉分析,会有无限想象的空间。
对用户打好标签后,对不同标签进行排列组合,形成用户偏好矩阵。这样做的好处在于,如果单个用户喜欢看某种类型的节目,那么所在矩阵同样标签的 人观看的机率也会高,从而进行个性化的推介。这种大数据进行用户矩阵分析的方式,为用户提供了方便,提升了观影体验。视频网站的“追星族”产品,以明星为 维度划分粉丝群,并对他们的观影行为进行整合分析,就是这个理论的实际应用。
节目在创意之初,就应能以精准、统一的用户定位,来设定内容环节与广告。比如,将企业目标用户,作为节目的潜在观众群予以研究,分析他们的观影兴趣、与明星偏好,从而设置节目情节、选择节目要素进行编排、设计商业模式。
多家视频网站用视链技术,将用户喜欢的内容与电商结合实现一边观看一边点击购买“节目+电商”模式;东方卫视《女神的新衣》在节目模式部分也打造了内容即产品、观众即用户的理念,播出之后,买手伊芙丽旗舰店访客较之前增长100%,成交额增长50%。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27