
云计算大数据潮起运营商不进则退
2015年是云计算和大数据的“政策大年”。从年初开始,各种政策利好频频到来,发展云计算和大数据已经上升到国家战略层面。借助政策“春风”,云计算和大数据产业蓬勃发展,市场规模不断扩大,产业生态正在形成,越来越多的传统行业开始拥抱云计算和大数据,电信运营商面临新的机遇和挑战。
鉴于云计算和大数据在新一轮产业革命中发挥的重要作用,越来越多的国家将发展云计算和大数据上升为国家战略。2015年上半年,我国相继发布了多个有关云计算和大数据的重磅政策,密度和力度之大前所未见。
1月,国务院印发了《关于促进云计算创新发展 培育信息产业新业态的意见》,明确提出了云计算发展的原则、目标、任务和措施。这被认为是一份影响我国云计算、信息产业乃至信息化长远发展的重要政策文件。根据规划,到2020年,云计算将成为我国信息化重要形态和建设网络强国的重要支撑,云计算应用基本普及,云计算服务能力达到国际先进水平,并掌握云计算关键技术,形成若干具有较强国际竞争力的云计算骨干企业。
3月5日,李克强总理在政府工作报告中首次提出“互联网+”行动计划,强调要推动移动互联网、云计算、大数据、物联网等与现代制造业结合,促进电子商务、工业互联网和互联网金融健康发展,引导互联网企业拓展国际市场。而不到4个月的时间,7月1日国务院发布了《关于积极推进“互联网+”行动的指导意见》,“云计算”和“大数据”成为重要内容,在文件中多次出现。
6月17日,国务院总理李克强主持召开国务院常务会议,部署加大重点领域有效投资,发挥稳增长调结构惠民生的多重作用。会议特别强调,运用大数据等现代信息技术是促进政府职能转变、简政放权、放管结合、优化服务的有效手段,在环保、食品药品安全等重点领域引入大数据监管,用政务“云”提升政府服务和监管效率、造福广大群众。
8月19日,国务院常务会议通过《关于促进大数据发展的行动纲要》,会议认为,开发应用好大数据这一基础性战略资源,有利于推动大众创业、万众创新,改造升级传统产业,培育经济发展新引擎和国际竞争新优势。会议强调,要推动政府信息系统和公共数据互联共享,消除信息孤岛;要顺应潮流,引导支持大数据产业发展,深化大数据在各行业的创新应用,催生新业态、新模式,形成与需求紧密结合的大数据产品体系,使开放的大数据成为促进创业创新的新动力;要强化信息安全保障,完善产业标准体系,依法依规打击数据滥用、侵犯隐私等行为。
今年以来,短短几个月间,重量级政策密集出台,让ICT产业乃至整个社会都看到了云计算和大数据的发展前景。在政策“东风”的推动下,我国的云计算产业蓬勃发展,市场规模不断扩大。据中国信息通信研究院统计显示,2014年,我国公共云服务市场规模达到70亿元左右,增速达到47.5%,高于全球同期18%的增速,预计2015年市场规模将突破100亿元;2014年中国专有云市场规模约为216.8亿元,年增长率达到28.6%,预计市场规模将达275亿元左右。与此同时,云计算产业的生态体系正在形成,核心技术能力显著增强,与发达国家的差距日渐缩小。尤为值得一提的是,越来越多的行业开始拥抱云计算和大数据,云计算和大数据正在推动整个社会的创新,助力更多行业实现转型升级。
运营商还需“深度拥抱”
云计算和大数据正在打破传统IT架构,给各行各业带来新的机遇。对于电信运营商、互联网企业、IT厂商以及初创企业而言,云计算和大数据都意味着机遇,甚至是决定企业未来的不二法宝。
在我国云计算市场,电信运营商是不容忽视的重要力量。这主要得益于运营商进入市场时间较早,且拥有一些天然的优势:一是广泛的网络覆盖,二是高速的宽带接入能力,三是多年积累的渠道资源,四是品牌影响力以及丰富的客户服务经验。相比较互联网企业,电信运营商更能为企业以及行业用户提供个性化且具备电信级服务质量的云计算解决方案。不过,鉴于云计算市场的战略意义,越来越多的公司开始加大云计算市场的投入力度,一些互联网公司甚至制造商已经开始建设自有数据中心,发展公有云,直接面对用户。这对运营商形成有力挑战,运营商还需要深度拥抱云计算,这不仅意味着在云计算市场占据优势地位,同时也是为自身的转型发展提供强力支撑。
相比云计算,电信运营商在大数据市场的优势就不够明显。 作为大数据的传送者、生产者和使用者,目前电信运营商对于大数据的挖掘、开发、利用还远远不够。虽然拥有海量的数据资源,但是缺乏统一规划,数据分散且不完整,未能得到有效整合。即使一些公司开始分析利用大数据也主要集中在自身的内部优化上,偶尔出现的外部合作也不成规模,尚未找到理想的变现之道。原信息产业部部长吴基传曾公开呼吁:“运营商明明坐拥一座金矿,却都被BAT挖走了,要转变思路,一些不适应时代的规章制度,该打破的就要打破。”
“大数据已经成为新时代最具价值的宝藏之一,在某种程度上说,谁拥有了大数据谁就拥有了未来。”国务院副总理马凯在贵阳国际大数据产业博览会上强调了大数据的重要性。云计算和大数据代表了先进生产力,无论是国家、企业、个人都不能错过时代赋予的难得机遇,坐拥网络和用户资源优势的电信运营商更是要抢抓机遇,乘势而上,掌握发展的主动权。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29