
大数据时代,金融系统该如何应对
随着大数据、移动互联网海浪般的汹涌而来,当今这个时代正在发生着剧烈的变化,如果您抓住了它,这个时代对您来说则是最好的,如果您错失了这次时机,那或许就意味着您与这个时代擦肩而过,直至湮灭。
金融银行,作为大数据的最大生产者与拥有者之一,面对大数据时代的来临,最不容逃避。
大数据时代,正在重构新的金融体系
2012年轰动科技界的一件大事是美国奥巴马政府公布的大数据(big data)计划。这条信息被业界解读为大数据与互联网革命有着同等的地位。一向敏锐的全球金融业也已嗅到了大数据的重要性,并主动的做出对大数据的挖掘和尝试。
在英国,一家叫做Wonga的公司正在利用海量数据挖掘算法来做贷款业务,他们大量使用社交媒体和其他网络工具,将客户的信息碎片关联起来,预测客户的违约风险,为其信贷业务提供依据。
在中国,阿里巴巴旗下的阿里信贷自2012年8月起全面向普通会员开放,提供无抵押、无担保的低额贷款。而其依仗的正是掌握在手中的海量客户经营数据,这让阿里巴巴对客户的资信状况了如指掌,从而最大程度的降低了信贷业务的风险。
随着大数据、移动互联网的来临,传统的金融体系和商业模式正在被重构。
中国银行中增幅最快的农村商业银行,大数据能为它带来什么?
相关数据显示,截至2012年末,农村商业银行以47.1%的增幅成为各类商业银行资产同比增长最快的银行。截至2011年末,中国农村合作金融机构的总资产及存贷款规模已位居全国银行业第二位。
面向农村金融这个具有广大潜力的市场,农信系统已经迎来了前所未有的高速增长期。
这得归功于各地农信系统开发的多种新业务产品,为广大农村客户提供了与城市居民一样甚至更多样化的金融服务。
随着这些新业务产品的上线,每天都会新增大量的客户信息以及交易数据。这些庞大的数据能不能驱动业务,帮助分析客户业务需求开发出新业务,从而为农信系统带来更多的增长点?还是在当前激烈竞争的金融市场中,由于一堆“死数据”或错误且老旧的数据,变成农信系统持续增长的拖累?
这是农信系统当前最为关注的问题。
因此,农信银资金清算中心专门于2013年11月19-22日在深圳举办了一场以“大数据与互联网金融创新”为主题的高峰论坛。华为存储成为了受邀对象,与来自20多个省市的农信信息化专家交流,一起探讨农信系统在大数据趋势下,如何实现互联网金融创新与业务持续性。
“大”数据,需要“大”保护
2012年1月,达沃斯论坛发布报告《大数据,大影响》,宣称数据像货币和黄金一样已经成为一种新的经济资产。金融行业同时拥有了这两种有形的无形的宝藏。
如何保护好这份无形的、新的、庞大的经济资产,华为在农信高峰论坛上提出了专门的云容灾解决方案,它能满足以农信系统为代表的金融行业用户的容灾需要,其业界领先的32:1数据复制比,可轻松实现分支机构的集中灾备,非常契合当前金融机构垂直系统灾备建设的模式,而且还能借助OceanStor ReplicationDirector容灾管理软件和eSight存储资源管理套件,实现容灾系统的全面管理,这些优势对拥有多个分支机构的金融企业来说是最佳之选。
农信系统需要的是智能的大数据存储平台
大数据就像是一座沉睡的宝藏,它的隐形价值已经毋庸置疑,农信系统在对这些海量数据进行挖掘分析之前,必须先构筑高速大容量的大数据存储平台,而且它必须是智能的。
专为大数据存储而设计的华为OceanStor 9000则是唤醒大数据宝藏的魔法棒,它实现了存储、分析、归档三位一体,在数据统一模块的调度下,数据可在多域间有效流动,免除数据从生产系统到分析系统跨设备数据装载和迁移,可提升60%的存储效率。
OceanStor 9000存储、分析、归档“三位一体”的创新架构,确保了生命周期内以数据为中心,最大限度发挥数据价值。而且农信系统在初始时可以使用较小的配置,降低CAPEX开销,随着金融新品的开发,农信系统可以快速扩容,应需而变。
通过这场大数据与互联网金融创新高峰论坛,相信农信系统能够找到最适合自己的答案,而这个答案里一定有华为存储所贡献的行业理解与IT智慧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08