
大数据十项标准出台在即 大数据产业破局行动开启
近日,媒体报道,国内大数据产业标准化进程正在逐步推进当中。国家标准委正在着手制定首批共十项大数据标准,分别是大数据术语、大数据技术参考模型、数据交易平台交易数据描述、数据交易服务平台通用功能要求、数据能力成熟度评价模型、多媒体数据语义描述要求、科学数据引用、数据溯源描述模型、数据质量评价指标和通用数据导入接口规范。其中前四项处在征求意见稿状态,中间四项已完成草案,最后两项还在草案大纲阶段。另外,大数据标准体系框架也已在征求意见稿阶段。
大数据是指不用随机分析法(抽样调查)方式,而采用所有数据进行分析处理的技术,其具有大量、高速、多样与价值的特点。与传统的BI分析相比,大数据分析能力更强,数据规模更大,分析方式更为先进。互联网时代,数据资源已经和能源一样,正日益受到重视,因此近年来,全球范围内,无论是跨国公司,还是各行业领域,以及各国政府,都在鼓吹“大数据时代”的到来。
2014年3月,大数据概念首次在我国《政府工作报告》中出现,随后在近期国务院发布了《促进大数据发展行动纲要》,《纲要》明确2018年底前建成国家政府数据统一开放平台,率先在信用、交通、医疗等重要领域实现公共数据资源合理适度向社会开放,我国大数据产业爆发在即。
不过,由于行业规则和行业标准缺失、数据的权属不明,当下大量的数据交易是不规范且有争议的,这阻碍了大数据产业发展。此时中国起草、制定与出台大数据相关文件,大数据产业政策顶层设计日益清晰,行业标准又将逐步形成,困扰大数据行业的瓶颈或将迎来部分解决,大数据产业破局行动开启。
前瞻产业研究院发布的《2015-2020年中国大数据产业发展前景与投资战略规划分析报告》指出,2014年全球大数据市场规模达到285亿美元,同比实现53.23%的增长,大数据将成为全球IT支出新增长点。我国大数据市场目前仍属于起步阶段,2014年我国大数据市场规模达到767亿元,仍有很大发展空间,随着“十三五”逐渐临近,大数据发展将进入政策出台的密集期,产业发展将获政策利好,预计2020年市场规模将达到8000亿元。
在政策为大数据破局的背景下,我国大数据产业有望在“十三五”期间迎来投资高潮。大数据产业可分为资源、技术与应用市场三大领域。上游数据资源是公司持续变现的资本;中游是数据技术公司,在大数据产业发展初期,硬件、基础软件、分析服务与信息安全等将成为直接受益的部分;下游应用市场包含互联网、政府、电信、金融、制造业、医疗保健、零售、交通等多个行业。其中在互联网、政府、金融、电信等行业的大数据市场就已经形成了巨大的需求,份额超过50%。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04