
大数据滥用 借贷平台肆意妄为的背后
随着“大数据”这一概念的普及,及其在以互联网为平台上的大规模运用,即使是普通大众,也对其有了或深或浅的了解。对于整个社会的未来来说,大数据的作用和意义无可替代,能够最大程度地改变人类的生活方式。但在大数据经历了自己的“蜜月期”后,其“后遗症”开始凸现出来。甚至在某些极端的情况下,沦为骚扰乃至作恶的“帮凶”。
尤其是与个人隐私联系尤为紧密的互联网借贷平台,大数据经过收集、处理已然能够更精准地判定用户是否适合贷款、贷款额度、偿还能力等。但更更让人无奈的是,大数据也成为追讨贷款的新途径,并对大众的生活产生一定的影响。
大数据帮讨债 用户感觉“赤裸裸”
近日,蚂蚁花呗又火了。但这次的火与其便利性毫无关系,恰恰相反,是将蚂蚁花呗的另一面展示给大众。有网友在知乎上提问,描述接到自称蚂蚁花呗工作人员的电话,对方向他打听一位朋友的去向,这位朋友拖欠花呗欠款,而且联系不上。当网友表示自己跟他不太熟,对方却表示,能够看到记录,这位网友某月某日给他赠送过礼物。
从这件事就可以看出,人们在蚂蚁花呗强势的大数据下几无隐私可言,完全就是“透明人”。对国内互联网行业稍有了解的人都清楚,蚂蚁花呗的大数据是来自阿里巴巴的大数据生态链条。也就是说,只要使用过阿里巴巴的服务,如淘宝、支付宝、天猫等,个人数据就会被阿里巴巴收集并整理。
而借贷平台借助大数据讨债的不仅仅是蚂蚁花呗,还有京东白条等。在110法律咨询网上,就有人提问:“我在京东商城上使用白条消费,由于京东方面的原因导致我的白条逾期。然后京东委托第三方对我进行催款,过程泄漏我的个人隐私资料。请问,京东以我未还白条为由,将我的个人隐私委托给第三方这种行为是否合法?”可见,毫无顾忌地使用用户个人隐私,已经成为普遍事实。
常规≠合法 借贷平台涉嫌违法
在事件发生后,蚂蚁金服对此回应说,利用关系人信息提醒还款,是信贷行业的常规做法。对于新生的互联网借贷平台来说,通过大数据手握用户隐私信息,并将其完全利用,似乎无可厚非——反正大家都是干的。但这种看似合乎常理的做法,其实已经涉嫌侵犯用户的合法权益。
银行也会针对贷款延期、信用卡不还等用户催款,但一般是通过对用户本人在办业务时提交的联系人进行询问,并请其转达信息。也就是说,银行只是与用户自己认可并留下的社交群体进行联系。但互联网借贷平台在讨债的时候,却使用了有可能不相干的人的信息。他们并不是用户留下的,只是互联网借贷平台单方面掌握的。
用这样的关系网讨债,既是对用户个人隐私的侵犯,也是对其他不相干人的骚扰。上面提到的用户在100法律咨询网上的提问,回答的两位律师表示“违法,属于侵权”、“可以直接起诉京东侵犯隐私权”。可见,借贷平台的做法严格来说,是涉嫌违法的。
别让大数据成丑恶帮凶 监管迫在眉睫
蚂蚁花呗就讨债功能在官方微博做出回应,表示“立刻在第一时间暂停了以联系关系人来提醒借款人进行还款的方式”。并且蚂蚁金服就此作出改进,比如将人工电话提醒的时限由现在的超过还款日13天,调整为超过60天,且不会涉及具体的商品信息。但是仅仅这样做是完全不够的,并没有从根本上解决大数据滥用的问题。
每个人既然无法摆脱互联网,那个人数据被收集就是必然的事。但由此得来的大数据并不能去作恶,必须向着有益的方向延伸。要做到这一点,仅靠借贷平台的自觉、自律是远远不够的,必须有严格的法律条文、规章制度等,让其走向规范化、合法化。
中国青年报社会调查中心的一项调查显示,75.9%的受访者发现目前存在“大数据”被滥用的现象。这表明,已经有越来越多的大众认识到大数据滥用带来的危害。大数据的监管,已经迫在眉睫。
库评:每个人生活在两个世界里,一个世界是物理世界,还有一个世界是数据世界。物理世界的所有表现,你通过互联网访问社交网站,所有数据将会留下来,朋友圈关系将会留下来。通过移动互联网访问搜索,搜索内容会被留下来。今天通过电子商务购物,购物内容被留下来。今天通过支付工具,支付数据被留下来。今天通过家庭智能物件,所有数据都被留下来。这是一件好事,因为厂商可以通过挖掘消费者潜在的购买力再借由推送来促进其消费,消费者也可以在极短的时间里得到称心如意的商品,岂不双赢?但想想也很可怕,这就相当于消费者的一举一动完全在数据的掌握之中,只要厂商有心,就能了解消费者的一切。这个时候,数据的监管是个大问题,怎么利用收集的数据?利用到什么程度?当消费者感到被侵犯时法律问题怎么解决?这一切的一切都说明:大数据的监管,需要即刻提上日程了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16