
一直以来,大数据和云技术都给人一种“高高在上”的感觉,一方面投入大,周期长,相关技术都为商业化产品服务,脱离于普通百姓的生活;另一方面线下生活所涉及的数据繁冗复杂,很难通过云技术和大数据进行完美的复刻。此次央视让大数据走下“神坛”,让普通老百姓体会了一把“大数据”的现实应用。
第一,大数据将推动IT公司并购
大数据概念覆盖范围非常广,包括非结构化数据从存储、处理到应用的各个环节,与大数据相关的软件厂商也非常多,但是又没有哪一家厂商可以覆盖大数据的各个方面。因此,IDC认为在未来几年中,大型IT厂商将为了完善自己的大数据产品线进行并购,首当其冲的将是信息管理分析软件厂商、预测分析和数据展现厂商等。
第二,Hadoop迈向商业化的脚步加快
目前,Hadoop的社区环境与10年前的Linux非常类似。Linux在90年代初期开始成立开源社区,在90年代中期涌现了SUSE、RedHat这些主流商业化厂商,并在2000年前后形成了完整的生态系统,成为业界主流的操作系统方案。而Hadoop在2006-2007年起步,在2009年出现了Cloudera、MapR等解决方案。如何把数据——不管是在公有云还是私有云里的数据,或者是传统的企业级数据库里的数据,迁移到Hadoop上进行处理,这是一个趋势,也是一个业界的难题。IDC认为,在未来2-3年中,将会有重量级的Hadoop商业化版本发布。
第三,大数据真正实现“以人为本”
2013年,大数据产业链雏形已经初显,围绕大数据的产生与集聚、组织与管理、分析与发现、应用与服务各层级正在加速构建。从各层级的价值实现来看,离不开技术创新,不仅要挑战传统的数据存储架构、网络传输能力、服务器的计算能力,同时也引发数据库、数据仓库、数据挖掘、商业智能、人工智能、内容/知识管理等领域的技术变革。
在2014年,如何实现大数据技术创新与“以人为本”服务理念的深度融合显得尤为重要,利用大数据技术重塑商业和社会价值,包括制造、流通、医疗、教育、交通、安防等领域业务流程创新和数据的整合管理。同时,利用大数据提升信息查询、内容分发、移动支付等应用体验,帮助用户能享用最大化数据的价值。
第四,更有效的大数据分析将增加收入来源
以数据分析和处理为主的高级数据服务,将出现以数据分析作为服务产品提交的分析即服务(Analyze as a Service)业务;将多种信息整合管理,创造对大数据统一的访问和分析的组件产品;基于社交网络的社交大数据分析;甚至会出现大数据技能的培训市场,教授数据分析课程等。
Gartner在2014年1月发表的题为“用户调查分析:提高效率降低成本是作出新技术解决方案决策之王”的研究报告称,移动性、大数据和分析对于机构来说比社交网络更重要。这与Gartner最近对厂商进行的调查结果是一致的。在这项调查中,2015个提供商表示,大数据分析产生的收入是社交网络产生的收入的三倍。而Adaptive Computing预测称,通过提高效率、减少内部成本和启用新的业务模式,大数据分析将产生更多的收入。
第五,以应用为切入点,国内企业高歌猛进
国内企业受限于IT产业链所处的位置,普遍在数据库、数据仓库、商业智能等领域基础薄弱,因此,在大数据上布局不可能如跨国企业如此全面。但国内相对强势的互联网企业、电信运营商、电信设备供应商已经开始启动产业布局,以互联网应用服务为切入点抢占大数据制高点。
赛迪顾问电子信息产业研究中心高级分析师刘新表示,目前,阿里巴巴已经在利用大数据技术提供阿里信用贷款与淘宝数据魔方。腾讯则通过社交网络数据挖掘打造全新营销平台,为广告主实现精准营销。百度建立了包括百度指数、司南、风云榜、数据研究中心、百度统计等五大数据体系平台,提供企业实时数据服务。中国移动也在大云计划中展开了海量数据处理、海量数据存储、高扩展性等技术研发。华为也挺进企业数据服务市场,并已推出了基于移动终端的数据分析方案与应用。(本文来自:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29