
大数据、互联网金融互联网两大风口的融合
本月初,支付宝9.0版本发布,增强了社交属性,但手势解锁功能却被强制关闭,这让许多用户大呼没有安全感。
对此,支付宝自信回应,因其拥有大数据风险防控体系“安全大脑”,若非主人,即使掌握密码,安全大脑也会阻止账户资金被挪用。那么,安全大脑为何让支付宝如此有底气?
安全大脑是支付宝借助大数据技术研制的一套风险防控体系,根据日常对支付宝使用者的各方面习惯的全面收集,经过高速计算判断操作风险,来保障用户的账户交易安全。
风控大脑会根据账户、设备、位置、行为、关系、偏好六大维度,一万条策略来判断是否是主人在操作账户。这其中涉及很多前沿科技,每个人触控手机屏幕的方式不同,安全大脑借助陀螺仪、重力感应将个人习惯记录收集。然后,通过指压、接触面积、连续间隔时间等,来判断是否是主人操作。
支付宝借助大数据平台的监测分析,对个人所在关系网络中的每个个体进行信用判定,一旦与危险账户发生资金关系,便立刻警示。
用户的行动轨迹也是安全大脑判断的范围,一旦在不经常购买的城市,安全大脑便认为此项操作可疑。0.15秒之内,安全大脑会通过一万条策略的综合评估,打出一个风险评分,评分高,会直接阻止交易或者进行二次校验,继续判断是否是本人。
数据,服务、价值
从安全大脑,我们已经可以依稀看到,在互联网时代,对数据的占有绝对是首当其冲。
目前许多互联网公司都致力于花样收集用户信息。在提供服务之前,通过注册、授权等方式获取用户个人信息,了解用户搜索轨迹从而整合数据;在安装手机APP之前,通过读取联系人、使用摄像头、录制音频、使用GPS等捕捉用户个人信息;申请会员时,要详细填写个人信息,并限制必填项,否则不予注册,自然也享受不到相应服务。
这样看来,我们似乎是以个人信息数据为筹码,交换相应的服务体验。而现实是即使还未享受到服务,个人信息已然贡献,互联网的分享精神就是这么给力。
今年4月,支付宝曾发布了一套大数据系统“到位”,用户可以在该系统中发布各种个性化需求,系统经大数据运算和精准匹配,瞬间就可以为其找到最适合响应需求的人,之后,结合手机的LBS功能,“到位”会快速让供需双方找到彼此,促成交易。
诚然,大数据与互联网是各取所需的合作伙伴关系,而最终目的都只有一个——利益。合理化取得最大收益是商家永恒的追求,在互联网时代借助大数据则更有助于这一追求的实现。
优势所在
除了可以全方位掌握用户的活动轨迹并分析预测其预期活动外,大数据对征信体系建设的贡献则有相当助益。
由于传统征信方式是通过固定途径收集一些可用作评级的信息,由分析人员对各项数据进行分析、评级,最终得到受评对象履约能力和履约意愿的评级。
因此数据容易失真产生偏差,由于人工的介入使其具有一定的主观性,结果与客观事实往往会有些许偏差。另外,因其实时性差、后续难以更正,在数据更新方面不是很方便,人力资源成本较大。
而大数据的产生,因其数据覆盖面广,涉及的维度全面,通过互联网方便快捷的服务全体商家,则可以很好的解决传统征信体系面临的问题。
大数据信用采用云计算技术,从数据录入开始到评价结果输出的整个过程全部由计算机算法完成,避免了主观判断的影响,确保评价结果的真实性;即使同时处理多个受评对象,仍然能够保证快速、准确的高效性。
大数据信用的运行成本主要来自知识产权和硬件的投入,相比大规模的人员需求,低成本优势显而易见。
此外,大数据信用还能够满足评价结果与信用信息的同步,也就是说,当受评对象的信用信息发生变化时,能够对其信用进行快速及时的计算,保证了信用的动态实时性。
与互联网金融的无缝对接
芝麻信用分则很好的依托了大数据的先天优势,为用户提供全方位的优质服务。
早在今年1月,蚂蚁金融服务集团旗下的芝麻信用被允许进行个人征信业务。形式上,其采用了国际上通行的信用分——芝麻分来直观表现信用水平高低,分数越高代表信用程度越好,违约可能性越低。
芝麻信用对海量信息数据进行综合处理和评估,其中以用户信用历史、行为偏好、履约能力、身份特质、人脉关系五个维度为主。主要接入了阿里巴巴集团的电商数据和蚂蚁金融的互联网金融数据以及公共机构的数据,运用大数据及云计算技术,客观评估并呈现个人的信用状况。
通过对大量数据的分析和挖掘,芝麻信用可帮助用户验证个人身份信息、评估信用风险,结合芝麻信用的反欺诈技术和黑名单共享,金融机构可将违约风险降到最低,切实保证用户资金安全。
伴随着行业的不断发展和进步,未来的大数据还将被运用到更多更深层次的领域,帮助行业获得更快更好的发展。
“互联网时代是没有隐私的。”这样的论调经常出现,无论是对个人信息安全的担忧,还是对互联网时代信息爆炸的无奈,都透露出对大数据的既爱又恨。互联网时代注重分享精神,分享经济是其典型代表,数据的分享则是重中之重。
中国有大量的数据,生产数据、电商数据全球领先,这些数据背后的价值难以估量。现在,国家提出互联网+行动计划,大数据本身是个基础架构,也是一个催化剂。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25