
大数据未来五年发展趋势统计分析
随着大数据技术的飞速发展,大数据已经融入到各行各业。2017年中国的大数据行业发展趋势是什么?大数据行业整体市场规模如何?大数据行业前景如何?请看大讲台老师的分析。
(一)大数据行业整体市场规模及预测
整体来看,2017 年中国大数据行业的发展依然呈稳步上升趋势,市场规模达到了 234 亿元,和去年相比增速超过 39%。随着政策的支持和资本的加入,未来几年中国大数据规模还将继续增长,但增速可能会趋于平稳。
(二)大数据在各行业应用状况
(1)企业哪些方面需要大数据?
根据大数据分析结果,将近一半的企业将大数据运用在企业工商信息管理方面,此外,在社会保障、劳动就业、市政管理、教育科研方面分别占据33.9%,32.7%,29.4%,29%。整体来看,大数据的应用范围广泛。
(2)多少企业应用到了大数据?
大数据分析对企业的发展越来越重要,35.1%以上的企业已经开始在企业内部应用到了大数据;34.2%的企业正在考虑应用大数据,22.9%的企业在未来1年有应用大数据的计划,仅仅有7.8%的企业暂不考虑应用大数据。
(3)这些企业如何使用大数据?
根据数据显示,38.8%的企业使用实时动态处理大数据并提供分析结果;37.5% 的企业分析历史数据;通过机器学习,辅助企业管理者更好地决策的企业占比为22.5% 。
(三)各行业大数据的发展水平如何?
我国行业大数据总体发展水平较好,在各行业都有应用。其中,金融大数据、政务大数据的应用水平高,同时交通、电信、商贸、医疗、教育、旅游等行业大数据的发展水平也有显着提升。
(四)大数据助力企业发展
(1)企业在哪些领域会应用大数据?
大数据应用广泛的top3领域是营销分析、客户分析和内部运营管理。其中,营销分析占比6成以上;50.2%的企业使用大数据进行客户分析;48.4% 的企业运用大数据进行内部运营管理。 大数据应用对企业的影响
(2)这么多企业应用大数据,大数据将会为这些企业带来什么收益呢?
55.8%的企业表示应用大数据后实现了更智能的决策;应用大数据提升了运营效率的企业占比为48.2%,这两个影响较为显着。应用大数据更好的管理风险,创造新的业务收入,增强生产能力的企业也占有一定比重。
从上述数据中,我们可以看出,大数据在各行各业的应用还将继续加强。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29