京公网安备 11010802034615号
经营许可证编号:京B2-20210330
半导体制造行业如何应用大数据分析
意法半导体是世界第五大半导体元件制造商,拥有业内最全的生产线之一,产品从分立二极管、晶体管,到整套平台解决方案,一应俱全。
意法半导体是一家跨国企业,总部位于瑞士日内瓦。意法公司的产品在许多领域处于行业前列:工业半导体、汽车电路半导体、移动电话的相机模组半导体,以及发展迅速的微机电系统半导体(用于温度传感器,安全气囊、心脏起搏器的加速计等)。
意法半导体(简称ST)在半导体制造行业内保持领先。这一行业竞争力极大,对更先进技术的需求从未间断,生产工艺复杂,周转时间紧张。
MatteoPatelmo、Diego Gerosa和Vincenzo Palumbo都是意法半导体的工程师,负责应对上述挑战。他们的工作地在一座靠近米兰的意大利小城,阿格拉泰布里亚恩扎(Agrate Brianza),工作重心正是用于控制高压、高功率设备的智能电力技术。这一技术在意法半导体的业务中占很大比重,而阿格拉泰布里亚恩扎(Agrate Brianza)是其研发制造该技术的中心。
意法半导体是全球行业领导者,业务范围覆盖所有电子元件。为该公司效力的意大利工程师们正专注于开发下一代智能电力技术。
“激发探索欲”
Matteo Patelmo,意法半导体电子器件经理,使用JMP软件已近10年了。像许多JMP用户一样,一开始他也是被JMP软件的图形展示功能(能让数据以更为易懂的形式呈现出来)、以及其简易的操作方法所吸引的。Patelmo只在大学里学过一点统计学,专业背景并不深。
“但使用JMP,其实不必有多深的专业背景。”Patelmo表示,“真的,除了基本知识——像标准差什么的——其他都不是很必要。”
“JMP能激发用户的探索欲。”Patelmo补充道,“因为看分析结果时,用户有可能遇到不熟悉的术语,就会想法弄清这些术语的含义——然后就会发觉自己从中得到了有用的信息,学到了新知识。”
Patelmo与其同事正在设法提高几项技术的产能,这几项技术近期已产出了成品。每次生产流程结束后,他们都会进行产品检测,以保证各项参数符合技术指标。
不过,有时生产环境还未配备完全,相应的新产品就已研发出来了。这是一个大问题。
“我们必须以极快的速度推出并生产产品,同时也必须保证所有产品都符合技术指标,哪怕生产环境还未完全齐备。”Patelmo表示,“JMP能够让我们轻松完成这些任务,如通过模拟还未制造出的生产工具的方式。”
解决难题的软件
当设计好的产品付诸生产,就可能涉及到400-500个生产步骤,整个生产流程长达3个月。如果在流程的最后才发现问题——比如某一参数不符合技术指标,Patelmo及其团队就会运用JMP软件中的分割平台功能来检验该批次产品的生产流程,找出曾用过哪些生产设备;再将瑕疵批次产品与高质成品进行对比,从而发现问题设备,有助于工程师们采取恰当补救措施。
Patelmo表示。“分割是很难的工作,但功能十分强大。我觉得,这样复杂的问题交给JMP来解决是最合适不过了”
“幸好纰漏不是每天都出,但生产瑕疵总是难免的。知道自己能够轻松搞定这些数据,对我们工程师来说真是种安慰。”
当位置数据与某一分区的数值产生特殊关联时,意法就运用JMP提高分析及数据呈现有效性。
实验设计
Diego Gerosa是位元件工程师。他运用JMP软件处理不同来源的超大数据集,并表示自己十分欣赏JMP软件的简易与高效。
Gerosa还说,实验设计(DOE)是产品开发过程中另一款十分有用的工具。他自己就运用该功能检测多种变量,如温度与压力对产品的影响。
Vincenzo Palumbo是一位生产设备研发工程师。他运用JMP分析不同参数间的相关性,以确定哪些参数对晶元特性产生最大影响。他也认为JMP是一款问题解决型软件。“我的工作和Diego的不同。”Palumbo说,“我的工作不需要分析大量数据,而通常是分析新元件和结构的参数值。”
Palumbo常用的JMP功能是实验设计、箱形图和相关性工具,同时也非常喜欢JMP的变异性/计数量具图平台以及生存分析功能。
意法半导体的团队还将JMP作为重要的数据呈现手段。
“有了JMP,即使你把大量数据合并到一张图表里,也能轻松地传递正确信息给听众。”意法电子元件工程部经理Patelmo如是说。“你可以准备一张图表,专门以你想要的方式、专门呈现你想要呈现的数据。我真的很喜欢JMP能以不同方式、以最有说服力的手段来呈现数据的功能。”
Gerosa同意这种说法。他说:“比如运用数据表与图表之间的动态关联,我就能建立起数据的实时呈现,并更清晰地看出这一数据真正意味着什么。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31