京公网安备 11010802034615号
经营许可证编号:京B2-20210330
当天文学遇到大数据
浩瀚的宇宙自古以来就一直吸引着人类进行不懈探索。天文学这门基于观测的最古老的自然科学,随着科技的进步,目前也迈进了大数据时代。
天文学是最早的数据驱动学科,云计算与大数据技术是制约学科发展的关键因素。除了海量天文数据,在线服务、软件工具、数据处理系统、分析挖掘环境等也都是推动天文科研、科普的重要因素。
海量的数据与先进的信息技术“融合”,在天文学领域结出硕果的同时,将在更广阔的空间发挥引领和示范作用。比如,分布式海量数据存储、大规模计算、新一代应用架构、机器学习和人工智能等方面的技术,帮助中国科学院国家天文台逐步实现数据资源上云,其中包括在贵州最新落成的FAST(中国天眼)观测的数据。
FAST是由中国人创造的世界上最大的单口径射电望远镜,它为我国天文学研究者提供了先进的仪器设备,同时也带来了海量大数据。有统计显示,FAST进入正式科学观测后,每天将产生高达50TB的数据。
在FAST早期观测时,国家天文台采用的是漂移扫描的观测模式,这个模式有一个19波束的接收机,带宽400兆赫兹,通过1G的频率进行采集,它的原始数据的产生率是38个GB每秒,压缩后会小到原来的1/5到1/6,也就是大约6个GB每秒。
国内除了FAST,还有“悟空”卫星等,在国际上我国也有很多大型天文望远镜观测项目,如跨越南非和澳大利亚的一平方千米的天线阵,据称它的原始数据产生率将会超过十个PB每秒,将超过目前全球互联网的带宽,这都将给天文学带来海量数据。
人类从哪里来,宇宙有哪些奥秘,这些其实是生命起源的最基本问题。研究这些基本问题的天文学是一个开放的学科,数据都向全世界开放共享。国际合作是天文学的“基因”,天文大数据将大大推动计算科学的发展。云计算技术发展到一定程度,世界上就会有更多人可以参与到人类这些基本问题的研究中来,产生全球共享的效应。
以郭守敬望远镜为例,它是我国天文学领域第一个国家大科学工程项目,也是世界上光谱巡天效率最高的望远镜。自2009年落成以来,已经获得超过700万天体的光谱,是世界上最大的天体光谱库。目前,郭守敬望远镜的产品数据已经完成上云,并通过对外公开数据发布网站向全世界开放。上云完成后,将大大提升郭守敬望远镜观测数据的显示度和利用率。
在大数据时代,如何访问和使用这些海量的信息成为了全世界天文学家面临的难题。虚拟天文台之父、美国约翰·霍普金斯大学的Alex Szalay教授提出了“虚拟天文台”的设想。
虚拟天文台是通过信息技术,将全球范围内的天文数据无缝透明连接在一起,从而形成数据密集型网络化天文研究与科普教育的平台。多年来,我也一直致力于中国虚拟天文台的研究和建设。
由中国虚拟天文台与微软研究院合作完成的“WWT北京社区”,成为了WWT官方中文门户,正为全球的中文用户提供各种信息和资源。
大数据时代,虚拟天文台拉近了公众与宇宙之间的距离,而中国虚拟天文台和星明天文台推出的“公众超新星搜寻项目”,则为普通公众在欣赏宇宙之美的同时,有了参与天文新发现的可能。也许将来国内有更多拥有天文设备的爱好者、组织团体加入到该项目中,寻找更多类型的天体,也将不断充实虚拟天文台为公众服务的内容和功能。借助大数据带来的科技进步,全民搜星的时代或许很快就会来临。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15