
大数据面临的问题:数据是否需要共享
在这个大数据时代,数据带来的难题可真不少,比如,一个企业重要的资产中包括一些特殊的数据,那么就会遇到一个问题,企业是否应该与合作伙伴和供应商共享这些数据,还是应该保留其专有权?
在有关Facebook公司宽松的数据共享政策和欧盟实施通用数据保护条例(GDPR)之间,很多人都在谈论数据隐私和消费者权利。那么作为Facebook或Google等公司的消费者,应该分享多少数据呢?
那么对于企业呢?
企业可能正在处理自己的数据隐私难题,他们应该与合作伙伴、供应商还是与其他组织共享公司数据吗?如果是这样,可以分享哪些数据,以及它们应该保留为私有和专有的数据?毕竟,数据是新的石油。亚马逊、Facebook和谷歌都通过收集和利用数据建立了价值数十亿美元的公司。
虽然数据是公司可能拥有的顶级资产之一,但也可能有令人信服的理由来共享数据。例如,如果行业前沿的癌症中心分享他们每个人收集的数据,它们可能会加速并促进社会治愈癌症的努力。但与竞争对手分享也可能影响他们在市场上的竞争优势。
组织也可能正在考虑参与供应商计划,例如SAP公司正在开发的名为Data Intelligence的计划,该计划将匿名化企业客户数据,并允许这些客户将自己与其他市场进行对比。
“人们意识到他们所拥有的数据具有一定的价值,无论是出于内部目的还是出售给数据合作伙伴,这都会让他们更加意识到他们如何匿名共享数据。”SAP公司MikeFlannagan表示。就他们如何看待数据而言,不同的公司处于不同的成熟水平。
即使企业共享匿名数据以便训练算法,问题仍然是企业在共享匿名数据资产时是否放弃竞争优势。组织需要小心。
“数据非常有价值。”Databricks公司的联合创始人兼首席执行官,加州大学伯克利分校的兼职教授AliGhodsi表示。根据Ghodsi的经验,组织不希望共享他们的数据,但他们愿意出售对它的访问权限。例如,组织可能会在有限的时间段内出售对特定数据集的有限访问权限。
Ghodsi说,数据聚合器是通过抓取网络来创建销售数据集的公司。
Ghodsi说,有些传统的公司可能有数年或数十年的数据尚未暴露于应用人工智能和机器学习,而这些公司可能希望使用这些巨大的数据集获得竞争优势。例如,任何拥有大量会员卡的零售商都可能拥有10年或20年的汇总数据。
在Ghodsi的经验中,组织需要更多数据,但他们不愿意分享,有时甚至在他们自己的组织内也不分享。在许多组织中,IT团队控制着对数据的访问,并且可能不愿意对业务线领域的数据科学家的所有请求进行响应。这是2017年12月由Ghodsi和加州大学伯克利分校的其他研究人员共同撰写的题材之一,主题为“伯克利人工智能系统挑战观点”。Ghodsi表示,该小组正在进行研究,以寻找激励企业公司分享更多数据的方法。其中一种方法是模型本身,而机器学习模型是对所有数据的非常紧凑的总结。
Ghodsi说,“例如,我们拥有世界上所有癌症的大量数据集,可以创建一个机器学习模型。它可以预测肺部癌症的可能性、它们的健康状况、癌症的风险。但仍然没有分享所拥有的所有X射线数据,而且不打算对外你分享。”
Ghodsi说,现在正在开始这种分享。谷歌公司已经发布了许多用于分类图像的模型。
另一种方法称为转移学习,Ghodsi说在Databricks公司启用了一种方法。Ghodsi说,这个工作通过将现有模型与新模型相结合,允许企业通过利用新数据获得新价值。
另一种分享研究数据价值同时保留企业对该数据的私人访问权限的方法是通过联合机器学习。这是Owkin公司使用的技术之一,Owkin公司是一家帮助癌症研究中心加速其研究效益的创业公司。
“在学习中,企业可能将数据留在边缘设备上。”ClouderaFastForwardLabs的数据科学家FriederikeSchuur表示。谷歌公司在博客中解释了它的工作原理:“企业的设备会下载当前模型,通过学习手机上的数据来改进它,然后将更改汇总为集中更新。只有模型的此更新才会发送到云端,使用加密通信,在其中立即与其他用户更新进行优化,以改善共享模型。所有培训数据都保留在设备上,并且云中不会存储任何单独的更新。”
通过这种方式,组织可以为社区的研究工作做出贡献,但不会在此过程中泄露他们的数据。
转移学习和联合学习等创新可以帮助解决医疗保健公司分享数据的问题。数据治理服务商Immuta公司的联合创始人兼首席执行官Matthew Carroll表示,在数据共享方面,医疗公司已经看到了很多关注。
他说,“他们害怕将数据提供给其他人,他们很清清楚楚这是未开发的财富,是未来的企业收入。”
对于初创公司而言,这种恐惧也可能转化为其他后果。例如,如果价值被认为是数据本身,投资公司是否会向分享其数据的公司提供资金?
Schuur说,每家公司都需要自己仔细决定分享内容。“如果是癌症研究,人们应该有更多的数据共享。”
但是组织应该非常小心他们分享的内容以及如何分享。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15