
大数据交易:产品服务或为主要形式
“大家知道,数据是有价值的,但是数据作为一个要素,需要在市场上合法的流通,不然的话数据流动将形成一个无序的状态。正是基于这样的认识,贵州才成立了一家大数据交易所。特别是对大数据交易所的相关的规则进行了探索,利用市场这只无情的手来配置数据的合理流动。”11月16日,贵州市委书记陈刚在由国家发改委、工信部、中央网信办和深圳市政府主办的2015年大数据创新发展论坛上介绍的全国首家大型数据交易所的情况引起了现场观众的关注。
大数据产业发展机遇来临
为加快推动实施《促进大数据发展行动纲要》,国家发改委在组织实施大数据综合试验区建设,贵州正是其中一个试点区域。国家发改委副主任林念修表示,中国拥有世界第一的大数据用户数,市场优势显著,发展潜力巨大,发展大数据势在必行,所以中国要把握新挑战,把握新机遇。同时,大数据产业自身也正在迎来快速发展的大好机遇,研究机构预测,未来5年,全球大数据市场将保持31.7%的年复合增长率,中国的大数据市场年复合增长率将高达51.4%,大数据产业正在成为新的经济增长点。
公开资料显示,贵阳大数据交易所以电子交易为主要形式,摒弃大数据产业交易底层数据的原始概念,由交易所作为第三方机构对数据进行清洗与建模分析,同时为买*卖双方提供一个数据结果交易的场所。数据将进行自动计价连续交易,交易所将针对每一个数据品种设计自动的计价公式,数据买方可以通过交易系统查询每一类数据的实时价格。目前大数据交易所对数据买方进行了一些限制,数据买方合法性在2015年,暂时不允许任何个人购买交易所的数据。同时在监管不健全的情况下,外资数据买方购买数据之前需要进行资格审查。
大数据交易问题仍存在
论坛上,中国工程院副院长邬贺铨院士对数据交易表达了他的看法和担忧。目前,我国北京、上海、广州、深圳、贵阳、陕西等成立了一批数据交易所,正在筹建的还有徐州、江苏、重庆、沈阳、哈尔滨、青岛等。数据交易所的模式一般有两种,一种是产权,把数据所有权卖出去,但是卖的是不是自己的所有权这是一个问题;第二是使用权,使用权的交易涉及到所有权是谁的、是不是所有者授权等问题。有些交易所把政府的公共数据也去卖,邬院士认为政府的公共数据是有价值而没有价格的,只有公开或者不公开。另外,谁有权批准成立交易所,数据交易所的交易规则、标准、方法、审计缺少规范等问题都需要在目前大数据热的情况下由政府引导。大数据产业发展的前提是开放数据,开放数据需要有数据的整合能力、脱敏和安全技术。
大数据交易未来可能以产品服务为主
关于目前大数据交易的合法合规、安全以及交易形式等问题,论坛嘉宾奇虎360总裁齐向东和阿里巴巴副总裁涂子沛也表达了他们的观点。齐向东认为,原则上讲,大数据交易在一个交易市场上公开的方式进行,有一定的规则,应该是安全的。比如通信的数据和银行的数据都涉及到每个人的隐私,如果把这些数据加工生产成为一种个人的信用等级的产品,再进行交易。购买的就不是个人隐私,而是一种产品。那么这种交易就是可以进行的。
涂子沛认可了他的观点,并补充说道:“数据交易的难点之一是数据的定价难以确认。第二,我认为如果数据交易仅仅是把数据的所有权卖掉,是一种很LOW的做法。因为数据不是像黄金一样的有形物质,物质用完会消耗,但数据不会被消耗。它的价值在不同的时间、地点、场景是不同的。”涂先生表示数据应该是智能社会的土壤。如果数据单单这样有形的去买*卖,就存在数据的价值取决于购买时间点的问题,但是现在数据都是以数据流的形式存在的,买家需要的可能是一个不断更新的数据。“我觉得,未来的数据交易应该是一个服务的形式,买的是数据服务,而不占有数据,但是可以享受数据所带来的查询、比对等种种服务。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28