
制约商务智能在制造业大规模应用的因素
商业智能的关键是从许多来自不同的企业运作系统的数据中提取出有用的数据并进行清理,以保证数据的正确性,然后经过抽取(Extraction)、转换(Transformation)和装载(Load),即ETL过程,合并到一个企业级的数据仓库里,从而得到企业数据的一个全局视图,在此基础上利用合适的查询和分析工具、数据挖掘工具、OLAP工具等对其进行分析和处理(这时信息变为辅助决策的知识),最后将知识呈现给管理者,为管理者的决策过程提供支持。
一、国内市场
目前,国内商务智能(BI)的竞争者主要分为三类:国外厂商、国内厂商、外围厂商。
1、国外厂商:加速并购,完善产品
近几年,国际商务智能(BI)厂商加速了完善自身产品线的进程,表现为近几年商务智能(BI)领域的并购越来越热,新解决方案的不断推出。
对于国内市场,这些国际巨头已经认识到其潜力巨大,在过去的几年里,已经有很多国际巨头进入中国,成立办事处和研发中心,加强了国内市场的投入:
SAS、Brio很早就进入中国,开始攻城掠地。
Cognos由国家信息中心的北京优信佳公司作为其总代理,在国内销售、实施其产品,2006年7 月18 日,Cognos 公司宣布在中国发布Cognos 8BI解决方案(下称“Cognos8”)。
MicroStrategy在2003年11月6日宣布,通过其在大中国区的惟一总代理FirstBI公司代理销售其软件和服务,推广它的中文版产品,向中国企业提供数据分析软件。
Business Objects 在2003年底并购了 Crystal
之后,便紧锣密鼓地开始在中国市场布局。2004年1月在上海成立大中华区,紧接着推出了整合之前的过渡产品 Crystal Enterprise10
和Business Objects 6.5,2005年年初推出了两家产品整合后的 XI 平台。[page]
2、国内厂商两手准备
几年前,国内厂商通过与国际商务智能(BI)厂商合作代理其产品,积累了在商务智能(BI)领域产品、实施方面的经验,而现在多数国内厂商已有了自身独立的商务智能(BI)产品,虽然在功能上还需要不断完善,但已经迈出了坚实的一步。如在2003年Brio与金蝶达成战略合作伙伴关系,金蝶作为Brio的顶级代理商,把Brio
Performance Suite捆绑到金蝶的企业信息化整体解决方案中,在合作近1年后,金蝶通过OEM方式推出了自己的EPM产品。
面对国际商务智能(BI)巨头的竞争,国内厂商如金蝶、用友、创智等一方面同这些巨头建立良好的合作关系以维持发展,另一方面也在积极提升产品和解决方案的内在品质,向客户提供更完美的决策支持服务,争取与国外厂商一比高低。
3、外围厂商:渗透进入
外围的ERP等管理系统厂商显然不甘心看到众多专业BI厂商独自瓜分市场份额,于是他们首先在已有的ERP、SCM、CRM等客户上做文章,在ERP等产品上推出了集成的BI产品,在市场推广上也着重强调其系统的完整性与集成性,这让其产品在销售上取得了一定程度的优势。如SAP推出了其商务智能(BI)的产品SAP BW,重点强调SAP BW系统与R/3 ERP系统的完整性与集成性的优势。
同时,笔者预计,在未来的几年内,将会有为数不少的企业会进入这个市场,这个市场的竞争也将更加激烈。
二、国内制造业BI的应用
虽说几乎每个中国的企业都需要商务智能,但目前国内的应用主要集中在金融服务业(如银行、保险等)、电信业、航空业等资金充足、信息化起步较早、迫切需要数据分析的行业(这也是目前国内BI厂商关注的重点行业),国内的制造业企业在信息化建设方面起步较晚,而商务智能(BI)真正发挥其作用是需要底层的数据作为支撑的,否则就是“无源之水”,企业只有在应用ERP、CRM、SCM等系统3年以后,数据积累到一定程度以后,才会选择使用商务智能(BI)系统,商务智能(BI)系统在这时候也才会显现其价值。笔者认为制约商务智能(BI)在国内大规模应用的条件主要有:
1、目前,国产的商务智能(BI)系统在功能上还很不完善,与国外软件相比有较大的差距。而国外软件在价格上普遍较高。
2、国内的成熟、专业的商务智能(BI)实施顾问较少。
3、销售渠道的建立。目前,多数商务智能(BI)厂商是通过分公司或办事处来销售的,而未来国内制造业企业多数需要本地化服务,这种模式必将改变,但商务智能(BI)的销售、服务要求代理商要有很强的能力,如何选择、培养、发展这些代理商将是国内商务智能(BI)厂商面临的一个问题。
4、商务智能(BI)系统最昂贵的地方不是平台,而是模型,但目前由于国内市场应用BI的企业并不多,应用深入的更少,应用基础也比较薄弱,即使拿来国外先进的商业模型也不一定运转起来,所以尽快建立各种适合国内企业特色的模型是各商务智能(BI)厂商未来要投入大力解决的。
商务智能(BI)要想在国内制造业中大规模的普及,必须要解决好以上问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18