
制约商务智能在制造业大规模应用的因素
商业智能的关键是从许多来自不同的企业运作系统的数据中提取出有用的数据并进行清理,以保证数据的正确性,然后经过抽取(Extraction)、转换(Transformation)和装载(Load),即ETL过程,合并到一个企业级的数据仓库里,从而得到企业数据的一个全局视图,在此基础上利用合适的查询和分析工具、数据挖掘工具、OLAP工具等对其进行分析和处理(这时信息变为辅助决策的知识),最后将知识呈现给管理者,为管理者的决策过程提供支持。
一、国内市场
目前,国内商务智能(BI)的竞争者主要分为三类:国外厂商、国内厂商、外围厂商。
1、国外厂商:加速并购,完善产品
近几年,国际商务智能(BI)厂商加速了完善自身产品线的进程,表现为近几年商务智能(BI)领域的并购越来越热,新解决方案的不断推出。
对于国内市场,这些国际巨头已经认识到其潜力巨大,在过去的几年里,已经有很多国际巨头进入中国,成立办事处和研发中心,加强了国内市场的投入:
SAS、Brio很早就进入中国,开始攻城掠地。
Cognos由国家信息中心的北京优信佳公司作为其总代理,在国内销售、实施其产品,2006年7 月18 日,Cognos 公司宣布在中国发布Cognos 8BI解决方案(下称“Cognos8”)。
MicroStrategy在2003年11月6日宣布,通过其在大中国区的惟一总代理FirstBI公司代理销售其软件和服务,推广它的中文版产品,向中国企业提供数据分析软件。
Business Objects 在2003年底并购了 Crystal
之后,便紧锣密鼓地开始在中国市场布局。2004年1月在上海成立大中华区,紧接着推出了整合之前的过渡产品 Crystal Enterprise10
和Business Objects 6.5,2005年年初推出了两家产品整合后的 XI 平台。[page]
2、国内厂商两手准备
几年前,国内厂商通过与国际商务智能(BI)厂商合作代理其产品,积累了在商务智能(BI)领域产品、实施方面的经验,而现在多数国内厂商已有了自身独立的商务智能(BI)产品,虽然在功能上还需要不断完善,但已经迈出了坚实的一步。如在2003年Brio与金蝶达成战略合作伙伴关系,金蝶作为Brio的顶级代理商,把Brio
Performance Suite捆绑到金蝶的企业信息化整体解决方案中,在合作近1年后,金蝶通过OEM方式推出了自己的EPM产品。
面对国际商务智能(BI)巨头的竞争,国内厂商如金蝶、用友、创智等一方面同这些巨头建立良好的合作关系以维持发展,另一方面也在积极提升产品和解决方案的内在品质,向客户提供更完美的决策支持服务,争取与国外厂商一比高低。
3、外围厂商:渗透进入
外围的ERP等管理系统厂商显然不甘心看到众多专业BI厂商独自瓜分市场份额,于是他们首先在已有的ERP、SCM、CRM等客户上做文章,在ERP等产品上推出了集成的BI产品,在市场推广上也着重强调其系统的完整性与集成性,这让其产品在销售上取得了一定程度的优势。如SAP推出了其商务智能(BI)的产品SAP BW,重点强调SAP BW系统与R/3 ERP系统的完整性与集成性的优势。
同时,笔者预计,在未来的几年内,将会有为数不少的企业会进入这个市场,这个市场的竞争也将更加激烈。
二、国内制造业BI的应用
虽说几乎每个中国的企业都需要商务智能,但目前国内的应用主要集中在金融服务业(如银行、保险等)、电信业、航空业等资金充足、信息化起步较早、迫切需要数据分析的行业(这也是目前国内BI厂商关注的重点行业),国内的制造业企业在信息化建设方面起步较晚,而商务智能(BI)真正发挥其作用是需要底层的数据作为支撑的,否则就是“无源之水”,企业只有在应用ERP、CRM、SCM等系统3年以后,数据积累到一定程度以后,才会选择使用商务智能(BI)系统,商务智能(BI)系统在这时候也才会显现其价值。笔者认为制约商务智能(BI)在国内大规模应用的条件主要有:
1、目前,国产的商务智能(BI)系统在功能上还很不完善,与国外软件相比有较大的差距。而国外软件在价格上普遍较高。
2、国内的成熟、专业的商务智能(BI)实施顾问较少。
3、销售渠道的建立。目前,多数商务智能(BI)厂商是通过分公司或办事处来销售的,而未来国内制造业企业多数需要本地化服务,这种模式必将改变,但商务智能(BI)的销售、服务要求代理商要有很强的能力,如何选择、培养、发展这些代理商将是国内商务智能(BI)厂商面临的一个问题。
4、商务智能(BI)系统最昂贵的地方不是平台,而是模型,但目前由于国内市场应用BI的企业并不多,应用深入的更少,应用基础也比较薄弱,即使拿来国外先进的商业模型也不一定运转起来,所以尽快建立各种适合国内企业特色的模型是各商务智能(BI)厂商未来要投入大力解决的。
商务智能(BI)要想在国内制造业中大规模的普及,必须要解决好以上问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28