京公网安备 11010802034615号
经营许可证编号:京B2-20210330
传统零售与O2O零售之间差着一个“大数据”
O2O火了,也让更多人将目光聚焦到了实体零售,国内电商的强大有目共睹,但近期的“关店潮”证明O2O的另一只腿依然是“瘸”的。
错过电商化的时代,O2O时代很多实体零售商都不甘就此消亡,大企业纷纷开始自救,苏宁2011年就开始发力线上,近期更是联手阿里,万达拉来百度苏宁做非凡电商,沃尔玛各种折腾最终将1号店收归囊下,朝阳大悦城建立“悦界”从Shopping Center向Lifestyle Center快速转型……大公司自救,中小实体零售靠平台“拥抱互联网”,于是饿了么、美团外卖聚集了一大批餐饮店铺,唯品会、聚美优品是服饰类零售商的聚集地……
与其艳羡电商覆盖面大,不如保有自己本色
全民“电商化”带来了什么呢?移动支付成了“抢手饽饽”,前有阿里布局支付宝,后有微信的钱包,百度、京东也各有自己的移动钱包,大众点评的张涛也表示转型做移动支付……大家纷纷为O2O铺路是为实体零售商创造了复兴的机会,但扎堆做移动支付,并不能满足实体零售扭转“O2O”劣势的愿望。
实体零售与电商最大差别之一在于:电商覆盖面积往往远广于实体零售。一家中小型超市的覆盖面积是2500㎡,基本是附近居民步行10分钟或5分钟自驾的距离,理论上来说淘宝的小店铺的覆盖面积也远大于国内任何一家大型商场。实体零售既然不能做大,与其临渊羡鱼,不如专心经营自己那一亩三分地,做“精”用“小而美”吸引用户。
像现在非常火的黄太吉、雕爷牛腩,以及西少爷,是单以味道取胜吗?黄太吉的成功,营销的因素远高于商品本身价值,不仅利用微信微博与粉丝大量互动,同时还针对三里屯特定的白领消费场景打造自身服务特色,一家满足了用户所有需求的店铺,顾客又怎会去另一家店“探险”?
大数据让实体零售“小而美”不是梦
如何做到“小而美”呢?目前最便捷的方法就是大数据。
马云在去年互联网大会上曾说:“上世纪做企业一定要做好IT(Information Technology),这个世纪做企业要做好DT(Data Technology)。“DT就是数据技术,对实体零售而言,大数据就是粉丝,就是精准营销。
“客来乐”支付终端近期推出的线下收银台整体解决2.0方案也暗合大数据时代的精准营销,这套方案的收银终端有两个显示屏的体态装扫码器,与人体呈90度的屏幕显示二维码,以及优惠券和优惠活动,与人体称呈60度的屏幕用来扫码,主扫与被扫可以在一个机器上完成,收银员的操作与传统方式无异,避免了收银环节的核对与找零。
简化收银环节是一个优势,最值得实体零售关注的创新是收银打印出的发票上附有店铺的微信公众号二维码,同时使用微信支付,在手机端的支付面会提示顾客是否关注该企业微信公众平台,此举目的是收集用户数据以便最终可以达成精准营销等行为。据客来乐CEO介绍,目前这款产品已接入200多家支付方式,此前曾有店铺25%的进店消费用户选择关注该店铺公众号,这部分用户就成为了该店铺的核心用户,利用微信公众号可以向这些用户推送优惠券、店铺最新活动,最终形成自己的粉丝圈。
日本实体零售遭电商冲击小,秘诀亦在数据收集
为什么电商对日本实体零售影响不大?也是因为大数据的收集。
日本7-11株式会社培训部部长蒲哲介绍到:一是7-11整体销售额的60%来自自主研发,每周推荐的新商品约占100 SKU,行业壁垒较高,其二是因为日本传统零售商的互联网+起步比国内早十年,实体零售商已经习惯用互联网收集用户数据,从而形成精准营销,第三点是不仅对中高龄的用户会推荐产品,针对新生用户,更是与之不断互动,且通过各种方法将年轻用户吸引到店里来,譬如购买市面上的热门游戏,以供到店用户免费下载。7-11也因此越做越大,其地位难以被电商撼动。
各种杂、大、全的网购就像快餐,适于应急但由于“不接地气”所以与用户的感情难以培养,但实体零售却很容易利用大数据了解用户需求从而建立精准营销,当你常去的店,店主记住了你吃饭不喜辣,喝水要温,喜欢靠窗的座位······他已不仅是在满足用户的消费需求,而是在满足用户情感需求,这种顾客又怎会不是“老顾客”呢?
最后,用北大零售业研究中心主任王向阳的对实体零售的一句话结束本文:不是电商太强,而是实体零售太弱。请实体零售快马追上吧,否则,你做不到的,你的竞争者会做到!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01