京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据挖掘驱动教学改革
教育信息化的概念最早是在20世纪90年代,伴随着信息高速公路的兴建而提出的。在这二十余年的发展历程中,前半段的进程极为缓慢,直到AI技术的出现并与不同行业交互协作,才为教育信息化带来了新的启示与方向。
最近几年,教育数据挖掘成为各大教育机构的主要研究方向。西南财经大学天府学院信息技术教学中心也成立了专门的研究团队,在团队负责人蒲石的带领下已取得了包括学生成绩预测系统、个性化自适应学习系统、学习行为数据采集与分析系统等多项研究成果,为教育教学决策提供了有力支持,已成为未来教育信息化发展的风向标。
西南财经大学天府学院信息技术教学中心研究员蒲石,拥有新加坡国立大学与哥伦比亚大学留学经历,比国内更早几年接触到教育数据挖掘领域,对此也有着更为深刻地认知。在他看来,教育数据挖掘无疑是一个将来自各种教育系统的原始数据转换为有用信息的过程,却也可看作是嵌入已有教育系统的一个新的模块,它与教育系统中的各种要素产生良性互动,最终实现改进教学的目的。
对于教育工作者,教育信息化系统的作用主要是提供更多更客观的反馈信息,能够更好地调整和优化教学策略、改进教学过程、完善课程开发;而对于学生,教育信息化系统要根据学习者的实际学习情况,来实现教学内容组织、创新以及构建教学模式等作用,因此,蒲石根据数据挖掘的应用领域,将研究课题分为教学数据挖掘、管理数据挖掘和科研数据挖掘,研发而成地相应系统已应用于各大高校之中,收到了不错地反响。
以学习行为数据采集与分析系统为例,蒲石不以学生的登陆次数为计数单位,而是以某个时间单位的登陆人数来统计,这就避免了由于个别学员的反复登陆而造成学员学习强大的假象,帮助教学工作者真正发现学员群体学习的周期,从而对教学资源在时间上进行合理分配。“对于学员个体而言,学习周期是不确定的。但从教学的角度来说,却需要了解整个学员群体的学习周期,即通过登陆平台的记录,分析统计多长时间内整个学生群体都会登陆参与学习,以衡量群体在线学习开展的速度;也需要了解,随着学习时间的推移,有多少学生不再来学习了,以衡量群体在线学习终止的速度。”蒲石介绍说,通过教育数据分析,进行有效干预,并合理调整教学节奏,这就是学习行为数据采集与分析系统的研发初衷,该系统目前已经能够满足教学中的需求。
不过,随着教育的改革与信息化的不断发展,蒲石强调,未来对教育数据的分析与挖掘工作还需要不断深入,“未来的教育将重塑教学流程,学习过程也将从以教为主,转向以学为主。学习内容定制化、学习时间弹性化、学习过程游戏化、学习评价诊断化、学习结果课程化、学习组织中心化的自适应学习系统将成为一大主流发展方向。教育数据的全程收集、深度挖掘、定向应用,将不断推进教育向精准化发展。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27