
VC迎来新风口,投资先问大数据
“当技术决策能力超越人工团队的决策能力和信息覆盖面广度时,科技风投的新风口会全面开启。”近日,天曦网络科技(北京)有限公司人工智能研发部技术总监刘石告诉科技日报记者。
李开复很早就看到了大数据挖掘的商机。近日谷歌风投(GV)技术合伙人张拓木正式加入创新工场担任首席数据科学家,负责数据驱动的投资实践,以及AI和大数据方向的投资。
上个月,创新工场宣布募资5亿美元。创新工场董事长兼CEO李开复宣布,创新工场正式步入“Tech VC”(科技风投)时代。张拓木从硅谷谷歌离任加盟,将成为创新工场重要的技术智囊。
“主要方向是确定的。一是AI和大数据投资,二是尝试用更多大数据和机器学习的方法来提升投资流程各个环节的效率。”张拓木说。
投资方式进化是必然趋势
“在谷歌风投,机器模型扮演关键性的角色,在全球风投(VC)行业是绝无仅有的。”张拓木说。
大数据挖掘商业机会未来是不是会成为新风口,对于提升投资决策效率能有多大作用?
刘石从业多年,经历了很多个“风口”,从传统互联网到移动互联网,从车联网到物联网,从互联网金融到金融科技,从大数据到人工智能,他在重要的风口元年都打造了业内知名产品,所以对风口已经具有某种感知力。
“从2012年起,我和业内顶级研究机构一起开展大数据方面的研究,大数据挖掘商业机会方面未来毋庸置疑会成为新风口,其能基于海量的数据运用先进的人工智能技术,建立起完善的模型和系统,通过互联网可全球范围内捕捉商机。”刘石说。
刘石认为,数据创造价值,创新驱动未来,大数据对于提升投资决策效率有巨大作用,“决策=信息+逻辑”,投资信息本身就是大量数据,数据经过处理之后才是信息,信息经过人工智能技术处理才能作出决策。
“如果公司手工处理数据,基本上耗时耗力耗人,能处理的数据很有限。面对全球化的市场,和瞬息万变的商机,毫无疑问通过科学技术实现自动化的智能处理,将能以一顶万,成为最佳的选择。”刘石说。
那么,未来风投方式会不会由投资人逐步转向算法和机器分析?
“风投方式的进化是一个必然趋势,投资方不只会采用算法和机器分析,更重要的是会采用人工智能技术。”刘石说,这其中涉及到很多专业知识和专业指标的衡量和决策,采用人工智能算法和机器分析等技术,将大幅提高效率,降低人工成本,且更全面的信息智能决策,可将风险降到最低。
真正起决策作用的还是投资人
“这个改变对于科技公司尤其初创企业影响会非常巨大。首先,投资方的规则发生了变化,投资将基于更全面、更智能、立体、多维的信息,人工智能将从技术、财务、行业走势、舆情分析等不同维度来建模分析。”刘石说。
其次,对企业真正的实力要求更高了。刘石解释,不只看企业创业的方向,公司的创始人和核心成员实力也至关重要。“这意味对企业越来越公平,无论在哪里,只要做得好,有科技实力,做专做精,就不用担心融资的问题,因为投资方会通过强大的智能科技系统主动找到这样的公司。”刘石说。
不过,91科技集团董事长、CEO许泽玮也坦言,无论未来科技如何发达,人的作用终究无法完全替代。
“目前,虽然借助大数据的技术能够提升投资决策效率,但囿于目前企业数据尚未完善,大数据只能起到辅助作用,未来大数据基础设施更加完善,数据模型更加丰富,将会给投资决策提供更为重要的支撑。”许泽玮说。
在许泽玮看来,未来风投方式应该还是由投资人来做决策,算法和机器分析可以为投资人提供充足的数据和决策依据,但在商业领域和投资领域,人还会是决定性因素。
“大数据技术会产生一定的影响,可能会导致企业更加注重数据的提供,也能提升决策效率,但这些主要还是辅助作用,真正起到决策作用的最终还会是投资人。”许泽玮强调。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15