京公网安备 11010802034615号
经营许可证编号:京B2-20210330
富人发正品,穷人发A货,大数据售假是个什么鬼
前段时间曝光的一系列杀熟事件似乎给大数据头顶压上不轻的一座大山。接踵而来的讽刺段子堪比现在刷屏朋友圈的菊言菊语。
雷锋网编辑在“如何看待大数据杀熟”的知乎问题下,却看到了大数据的另一波骚操作——售假。
知友逻格斯写的一段关于大数据售假的内容获得了四百个赞,内容节选如下:
大数据杀熟算什么,你知道「大数据售假」吗?
某平台代购化妆品,对于 Dior、阿玛尼这些很贵的化妆品,会根据其掌握的买家的收入、消费状况进行细分:
A、如果系统判断你是个富人,平常一直用这个化妆品,就会给你发正品;
B、如果系统判断你是个穷人,买不起专柜里的化妆品,就会给你发 A 货,反正以你的消费水平你也没买过正品,更不知道什么是 A 货了。
更厉害的是,他们还「7 天无理由退货」,只要你敢申请他们就敢退。
那么退货率是多少呢?
2% 左右罢了。
这个场面是皆大欢喜的:
富人 A:23333 买到了便宜的粉底好开森。
穷人 B:23333 我也能用得起富人的粉底液了好开森。
穷人 C:诶,这个粉底液我用了起痘痘了,会不会是假货啊?
平台:小姐每个人的肤质不一样的,如果您不满意我们支持 7 天无理由退货。
穷人 C:啊?化妆品也还可以退货?好开森。
这样的场景无处不在,这一次的「杀熟」无非是击中了某些人脆弱的一面:我把你当兄弟,你居然想……?
抱歉,资本是不讲情义的,正如马克思所说的,如有 50% 的利润,它就铤而走险;为了 100% 的利润,它就敢践踏一切人间法律;有 300% 的利润,它就敢犯任何罪行,甚至绞首的危险。
什么什么,商家开始用大数据分析你的贫富状况并根据结果选择发A货还是真货了?前两天刚从某平台买了一堆化妆品的编辑感觉脸上一紧……
大数据为您一键细分,贴心服务
如果数据分析中心工作时候会说话,它可能的状态是:
哦上帝,看看这位女士前段时间都买了什么,XX、XX……好的相信我,她想要买的这瓶XX一定是她最近甚至是史上买过最贵的护肤品了,即使给她一瓶A货她也会用的很开心。
Amazing!这位女士一星期买了几万的美妆护肤品,我强烈建议给她划分至有钱人梯队,优先发货,从优发货。
……
当然以上情形只是想象,现实中大数据售假是怎么操作的?
邦盛科技副总经理孙斌杰告诉雷锋网,从理论上说,大数据售假主要利用的是数据爬取、采集和建模分析技术,通过把用户的职业、家庭收入、消费状况等各类数据,爬取和采集过来后,经过深度的清洗、加工后,通过关联分析等技术,建立相应的模型。简单说,就是对这个用户的经济收入、进行购买习惯和消费习惯等方面做一个用户画像,然后用设定的规则模型去套这个画像,画像跟哪类规则模型匹配,就采取类似的发货策略。
钱塘号曾概括过收到A货的人可能需要的特殊品质。比如购买能力,你在网上买件商品,订单提交后,系统会自动查询分析你在全平台的购物数据,如果你在同类产品消费倾向绝对大部分是低价位品牌,系统就判定你没用过高价位大牌真品,所以后台经分析后将你备注为低风险客户,给你发的货就容易是高仿货;
又比如收货习惯,其中退货少的人更容易买到假货,你的消费记录、购买记录、客单价记录将作为发货参考数据被系统识别。很多人有类似经历,买来的产品有小问题又不影响使用,怎么办?退货嫌麻烦,只有忍了。你如果真想退货,电商常常解释是因为发货前没有检查货品!
这显然是假话,因为每一批次的瑕疵品都有记录,之所以发给你,是因为你的综合退货率偏低而已,系统会自动认定你“好说话”、“能将就”,一有假货就优先“照顾”你。如果你收到货连看都不看,假货不给你给谁呢!
甚至收货地址也可能促使你买到假货。这并不是说二三四线城市就一定发假货。如果能识别收货手机与收货地址所在城市有没有产品专卖店。如果没有,你也没买过同类产品,系统会“放心”分配高仿货给你;如果有专卖店,系统会查询你是否买过同品牌产品。有消息透露,按此套路售卖高仿货,退货率还不到5%。
大数据真的售假了?还是过分解读
看完上述的售假事件,围观群众瑟瑟发抖,纷纷表示自己从没给过差评、没退过货、甚至买东西时都不会跟店主聊上一句。一但系统认为自己是个“没脾气的老好人”是不是就悲剧了?对方会故意给次品,故意把排后发货。
“所以以后我要多多退货、多多投诉。一但发现我被杀熟了,我就故意购物、故意退货、故意投诉、故意去举报。”某网友这么说道。
众多网友担心的情况会出现吗?
在孙斌杰看来,尽管从理论上分析大数据售假事件是可行的,但这种平台恶意行为并不常见。
因为这需要收集用户的多维度数据,同时进行相关的计算分析后,建立相应的规则模型。每次用户购买时,要启动相关的数据匹配后进行计算,查看是否与相应的规则模型匹配,才能确定发假货还是真货。、
这听起来容易,做起来却没那么容易,需要数据技术等支撑。一般商家没有能力也没有预算投入大数据分析。但随着互联网发展,不排除这类情况会增加。
“从某种层面上讲,大数据售假真实存在,通过大数据的能力把买卖双方串联起来,双方各取所需。但正如前面所说,我认为目前各类平台,不至于太多的存在专门投入相关经费整合数据,利用技术卖假的现象,这一说法有点过分解读。”
售假事件并非电商首创,类似事件一直存在。就算卖菜的小贩也会看人报价,只不过大数据可以把感性的“看人外表猜性格”替换成按数据了。
至于大数据售假到底存不存在?
电商那么多,一定有商家正在这样做,也一定有商家没想到可以这样。
而对于消费者,似乎只能更谨慎的网购,保护自己的各种数据不泄露了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15