京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据成为数字经济时代新引擎
4月23日,在首届数字中国建设峰会“数字经济”“大数据”等分论坛上,嘉宾们围绕“构建以数据为关键要素的数字经济”等主题畅所欲言,探讨数字中国建设的路径。
中国工程院院士、中国互联网协会理事长邬贺铨:
大数据驱动制造业转型升级
“大数据与企业的数字化转型密切相关。”邬贺铨说,如今,我们在制造业中应用了大量传感器,尤其是一些企业在设备管理、资源管理、运维管理、故障管理等环节产生了很多数据,这些数据要分析应用起来。
邬贺铨表示,大数据与人工智能、移动互联网、云计算以及物联网等技术协同发展,并将深度融合到实体经济中,成为数字经济时代的新引擎。大数据将驱动制造业转型升级,提升生产效率,改进产品质量,节约资源消耗,保障生产安全,优化销售服务。
浪潮集团董事长孙丕恕:
数据流通是建设数字中国的关键
“未来三年,能与电商一样红火的是大数据交易。”孙丕恕说,数据流通是建设数字中国的关键,要加快推进国家一体化大数据中心建设,加快推动政府数据的共享开放,释放数据价值。
孙丕恕表示,数据是土壤,万物生长在数据之上,数字经济、各种新应用、新态势都基于数据。建设数字中国不仅要发展数字经济,而且要扩展到政务、民生等社会各方面,要以数据为基础,打造智慧政府、智慧城市,提升政府社会治理能力和公共服务水平,让每个人都能享受到数据带来的智慧和便捷。
神州数码控股有限公司董事局主席郭为:
要推动大数据融合共享
“要推动大数据融合共享。”郭为表示,目前,互联网数据只占整个数据的20%,特别有价值的数据多在组织内部,如何把数据挖掘出来是一个很大的难点。今后要打通信息孤岛,实现数据流动,创新数据价值。
大数据生态是什么?郭为认为,其核心要素包括应用场景、算法、数据信息三个方面。其中,应用场景是数据技术支撑应用的根本,是服务对象最直接感知人工智能的环节要素;算法是数据技术支撑应用的核心,包括自然语言处理、知识表现等技术;数据信息是数据技术支撑应用的基础,是实现大数据智能化的必备条件。
科大讯飞股份有限公司轮值总裁陈涛:
数字中国将带来更大获得感
陈涛认为,数字中国包含四个维度:一是数字的个人;二是数字的政府;三是数字的城市;四是数字的中国。在数字化政府方面,希望政府能够把数据进一步打通贯穿,为百姓和企业带来更加高效的服务,同时也可减轻政府部门的工作压力,实现跨部门协同工作,从而使得决策更加高效。
“从个人,到政府,再到城市,最后汇集成为一个数字的中国,相信未来的数字中国能够给广大居民以及企业带来更大的幸福感、获得感。”陈涛说。
维信诺公司总裁张德强:
未来将实现万物可视化
“大数据作为数字经济的关键生产要素,已成为驱动数字经济创新发展的核心动能。”张德强说,未来随着数字经济的发展,将实现万物数据化、万物可视化。
张德强表示,新一轮技术革命具有数字化、智能化、网络化、可视化的特点。信息化时代的技术发展将给产业带来重大机遇,实现人工智能、移动互联等新技术应用中不同场景的搭建,从而促进产业间的高效融合,促进我国数字经济的快速发展。
美团点评集团首席执行官王兴:
用科技创新为实体经济赋能
王兴表示,近年来,随着移动互联网、人工智能、大数据、云计算、物联网等技术的发展,我国数字经济进入了新阶段。在新阶段,我国将拥有更多的创新机会,以及走向世界的机会。
创造经济价值,首先要创造社会价值。要把数字化、网络化、智能化的力量深度融入实体经济中,通过科技创新为其赋能,提升各个行业的效率,助力经济高质量发展,提升人民生活水平。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06