京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的游戏运营
如何利用大数据技术挖掘海量数据的潜在价值?怎样提供更有价值的产品和服务?这是游戏行业的公共课题。在近日举行的,首届游戏运营技术论坛上,以“大数据时代的游戏运营”为主题,业内众多大公司的核心高管与技术大牛,共同探讨了大数据时代之下的游戏运营之道。其中,我们也采访到了腾讯游戏运营部总经理崔晓春先生。听他讲述对对于当前游戏运营的深刻理解。
CSDN:对于大数据的游戏运营,目前游戏圈里大家都在讨论什么话题?
崔晓春:我们看到,国内近4 年网民的增速从19%到9.9%。同样,游戏新增用户从14.7%到
3.7%,一直呈逐步下滑趋势。人口增长的红利越来越小,现在已经不像10年前,依靠一个大作就可以积聚人气,插根扁担就可以开花了。即使拥有巨大用户的平台,如果不注重运营技术的提升,进行精细化的运营,产品就算有再多的推广,找不到你的目标用户,不知道他们所想所为,留不住你的用户,所做一切都会事倍功半,产品表现平平,在游戏这个红海里将渐渐迷失方向。
图:腾讯游戏运营部总经理 崔晓春
CSDN:对于大数据的游戏运营,您觉得最需要突破的难点在哪里?
崔晓春:大数据的处理能力和真正的落地应用是大数据的2大难题。没有分布式计算、存储和实时计算的能力,一切都是空谈;同样,没有真正落地的应用,空有大数据,也等于拥有一堆垃圾。
CSDN:目前现有的数据报表,只能反映已有的历史数据趋势。大数据下,真的就能提供更丰富、更长远的未来趋势和走势吗?其中的关键点在哪里?
崔晓春:在网络游戏这个虚拟世界里,我们也可以用大数据来提升游戏的运营能力。基于用户行为的大数据,除了产出一堆运营报表之外,我们还可以将它应用于come-stay-pay模型,做精准拉新、市场规模预测、用户挽留、精准推荐等等,甚至,我们还可以通过游戏用户的行为分析,验证游戏的数值设计是否符合预期,以便迅速做出游戏内容的调整,可以说是事半功倍。
但,大数据不是起死回生,最多是锦上添花。Facebook、Google和一些公司为我们做出了一些成功与失败的榜样。若我们局限于玩家制造的数据本身,却不去思考为什么是这样,我们就很容易掉到大数据的陷阱里,弄巧成拙。
CSDN:现在腾讯一款游戏需要多少游戏运营人员?对于一个游戏运营人来说,需要具备什么素质?什么性格?什么背景?什么知识?
崔晓春:作为一个运营人员来说,第一个最不可缺少是他是否能保持良好的心态。我先将心态放在技术的前面,因为技术是可以学的,而心态是很难调整的。
第二个是技术,运营人员是一个集大成者,操作系统、网络、数据库、编程、数据分析等等,甚至项目管理方面的知识,虽然不要求样样精通,但最好都懂一点。这是他所需要具有的一些基础技能。此外,海量数据的处理能力、数学建模则是新的要求。
理论上说是开发、测试、运营的人数,基本上应该是N:1:1的关系,这是一个传统模式。但是我们可以通过平台化和模块化的建设,将运营的技术人员比例进一步缩小。一个人负责好几款游戏的上线和故障的处理,这种情况在腾讯很常见。而达到这个目标,必须通过平台化的建设,工具化的建设,自动化的建设。这个数据要看不同的公司,对运营的重视程度、公司规模、自动化程度而定。
CSDN我们讲游戏的大数据运营时,端游可能更多一点。那现在移动互联网的手游份额越来越多,不同类型的游戏,玩法不同的游戏,它们之间又有什么不同的运营特点?
首先上午有一位嘉宾分享得非常好,不是数据越多越好,数据越多了就等于没有数据了,这是一个很实际的问题。手游和端游是不太一样的。
跑酷、快消类的手游,我在等电梯的时候可以玩一把,在等地铁的时候可以玩一把。但它和页游、端游就不太一样了。端游设计一个副本或任务,需要玩家花费很长时间,持续玩游戏。但是手游上没有这种时间,表现方式也不够。所以可能更需要关注手游的用户人群定位,如何在极短的时间内给与用户最佳的体验。
手游有一个优势,基本上它会比端游更实名,更接近人一些。比如说我的微信好友,我能确认那个人就是我的朋友或者同事。可以通过SNS的方式和他们进行交互,信赖感也会更强,游戏设计也可以基于此。
另外,和端游相比,手游的生命周期短,用户转换快,但手游的种类更多,这就需要做好用户在平台内不同游戏间转换的相关性分析,尽量承接,减少用户的流失。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27