京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的游戏运营
如何利用大数据技术挖掘海量数据的潜在价值?怎样提供更有价值的产品和服务?这是游戏行业的公共课题。在近日举行的,首届游戏运营技术论坛上,以“大数据时代的游戏运营”为主题,业内众多大公司的核心高管与技术大牛,共同探讨了大数据时代之下的游戏运营之道。其中,我们也采访到了腾讯游戏运营部总经理崔晓春先生。听他讲述对对于当前游戏运营的深刻理解。
CSDN:对于大数据的游戏运营,目前游戏圈里大家都在讨论什么话题?
崔晓春:我们看到,国内近4 年网民的增速从19%到9.9%。同样,游戏新增用户从14.7%到
3.7%,一直呈逐步下滑趋势。人口增长的红利越来越小,现在已经不像10年前,依靠一个大作就可以积聚人气,插根扁担就可以开花了。即使拥有巨大用户的平台,如果不注重运营技术的提升,进行精细化的运营,产品就算有再多的推广,找不到你的目标用户,不知道他们所想所为,留不住你的用户,所做一切都会事倍功半,产品表现平平,在游戏这个红海里将渐渐迷失方向。
图:腾讯游戏运营部总经理 崔晓春
CSDN:对于大数据的游戏运营,您觉得最需要突破的难点在哪里?
崔晓春:大数据的处理能力和真正的落地应用是大数据的2大难题。没有分布式计算、存储和实时计算的能力,一切都是空谈;同样,没有真正落地的应用,空有大数据,也等于拥有一堆垃圾。
CSDN:目前现有的数据报表,只能反映已有的历史数据趋势。大数据下,真的就能提供更丰富、更长远的未来趋势和走势吗?其中的关键点在哪里?
崔晓春:在网络游戏这个虚拟世界里,我们也可以用大数据来提升游戏的运营能力。基于用户行为的大数据,除了产出一堆运营报表之外,我们还可以将它应用于come-stay-pay模型,做精准拉新、市场规模预测、用户挽留、精准推荐等等,甚至,我们还可以通过游戏用户的行为分析,验证游戏的数值设计是否符合预期,以便迅速做出游戏内容的调整,可以说是事半功倍。
但,大数据不是起死回生,最多是锦上添花。Facebook、Google和一些公司为我们做出了一些成功与失败的榜样。若我们局限于玩家制造的数据本身,却不去思考为什么是这样,我们就很容易掉到大数据的陷阱里,弄巧成拙。
CSDN:现在腾讯一款游戏需要多少游戏运营人员?对于一个游戏运营人来说,需要具备什么素质?什么性格?什么背景?什么知识?
崔晓春:作为一个运营人员来说,第一个最不可缺少是他是否能保持良好的心态。我先将心态放在技术的前面,因为技术是可以学的,而心态是很难调整的。
第二个是技术,运营人员是一个集大成者,操作系统、网络、数据库、编程、数据分析等等,甚至项目管理方面的知识,虽然不要求样样精通,但最好都懂一点。这是他所需要具有的一些基础技能。此外,海量数据的处理能力、数学建模则是新的要求。
理论上说是开发、测试、运营的人数,基本上应该是N:1:1的关系,这是一个传统模式。但是我们可以通过平台化和模块化的建设,将运营的技术人员比例进一步缩小。一个人负责好几款游戏的上线和故障的处理,这种情况在腾讯很常见。而达到这个目标,必须通过平台化的建设,工具化的建设,自动化的建设。这个数据要看不同的公司,对运营的重视程度、公司规模、自动化程度而定。
CSDN我们讲游戏的大数据运营时,端游可能更多一点。那现在移动互联网的手游份额越来越多,不同类型的游戏,玩法不同的游戏,它们之间又有什么不同的运营特点?
首先上午有一位嘉宾分享得非常好,不是数据越多越好,数据越多了就等于没有数据了,这是一个很实际的问题。手游和端游是不太一样的。
跑酷、快消类的手游,我在等电梯的时候可以玩一把,在等地铁的时候可以玩一把。但它和页游、端游就不太一样了。端游设计一个副本或任务,需要玩家花费很长时间,持续玩游戏。但是手游上没有这种时间,表现方式也不够。所以可能更需要关注手游的用户人群定位,如何在极短的时间内给与用户最佳的体验。
手游有一个优势,基本上它会比端游更实名,更接近人一些。比如说我的微信好友,我能确认那个人就是我的朋友或者同事。可以通过SNS的方式和他们进行交互,信赖感也会更强,游戏设计也可以基于此。
另外,和端游相比,手游的生命周期短,用户转换快,但手游的种类更多,这就需要做好用户在平台内不同游戏间转换的相关性分析,尽量承接,减少用户的流失。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15