
大数据时代的游戏运营
如何利用大数据技术挖掘海量数据的潜在价值?怎样提供更有价值的产品和服务?这是游戏行业的公共课题。在近日举行的,首届游戏运营技术论坛上,以“大数据时代的游戏运营”为主题,业内众多大公司的核心高管与技术大牛,共同探讨了大数据时代之下的游戏运营之道。其中,我们也采访到了腾讯游戏运营部总经理崔晓春先生。听他讲述对对于当前游戏运营的深刻理解。
CSDN:对于大数据的游戏运营,目前游戏圈里大家都在讨论什么话题?
崔晓春:我们看到,国内近4 年网民的增速从19%到9.9%。同样,游戏新增用户从14.7%到
3.7%,一直呈逐步下滑趋势。人口增长的红利越来越小,现在已经不像10年前,依靠一个大作就可以积聚人气,插根扁担就可以开花了。即使拥有巨大用户的平台,如果不注重运营技术的提升,进行精细化的运营,产品就算有再多的推广,找不到你的目标用户,不知道他们所想所为,留不住你的用户,所做一切都会事倍功半,产品表现平平,在游戏这个红海里将渐渐迷失方向。
图:腾讯游戏运营部总经理 崔晓春
CSDN:对于大数据的游戏运营,您觉得最需要突破的难点在哪里?
崔晓春:大数据的处理能力和真正的落地应用是大数据的2大难题。没有分布式计算、存储和实时计算的能力,一切都是空谈;同样,没有真正落地的应用,空有大数据,也等于拥有一堆垃圾。
CSDN:目前现有的数据报表,只能反映已有的历史数据趋势。大数据下,真的就能提供更丰富、更长远的未来趋势和走势吗?其中的关键点在哪里?
崔晓春:在网络游戏这个虚拟世界里,我们也可以用大数据来提升游戏的运营能力。基于用户行为的大数据,除了产出一堆运营报表之外,我们还可以将它应用于come-stay-pay模型,做精准拉新、市场规模预测、用户挽留、精准推荐等等,甚至,我们还可以通过游戏用户的行为分析,验证游戏的数值设计是否符合预期,以便迅速做出游戏内容的调整,可以说是事半功倍。
但,大数据不是起死回生,最多是锦上添花。Facebook、Google和一些公司为我们做出了一些成功与失败的榜样。若我们局限于玩家制造的数据本身,却不去思考为什么是这样,我们就很容易掉到大数据的陷阱里,弄巧成拙。
CSDN:现在腾讯一款游戏需要多少游戏运营人员?对于一个游戏运营人来说,需要具备什么素质?什么性格?什么背景?什么知识?
崔晓春:作为一个运营人员来说,第一个最不可缺少是他是否能保持良好的心态。我先将心态放在技术的前面,因为技术是可以学的,而心态是很难调整的。
第二个是技术,运营人员是一个集大成者,操作系统、网络、数据库、编程、数据分析等等,甚至项目管理方面的知识,虽然不要求样样精通,但最好都懂一点。这是他所需要具有的一些基础技能。此外,海量数据的处理能力、数学建模则是新的要求。
理论上说是开发、测试、运营的人数,基本上应该是N:1:1的关系,这是一个传统模式。但是我们可以通过平台化和模块化的建设,将运营的技术人员比例进一步缩小。一个人负责好几款游戏的上线和故障的处理,这种情况在腾讯很常见。而达到这个目标,必须通过平台化的建设,工具化的建设,自动化的建设。这个数据要看不同的公司,对运营的重视程度、公司规模、自动化程度而定。
CSDN我们讲游戏的大数据运营时,端游可能更多一点。那现在移动互联网的手游份额越来越多,不同类型的游戏,玩法不同的游戏,它们之间又有什么不同的运营特点?
首先上午有一位嘉宾分享得非常好,不是数据越多越好,数据越多了就等于没有数据了,这是一个很实际的问题。手游和端游是不太一样的。
跑酷、快消类的手游,我在等电梯的时候可以玩一把,在等地铁的时候可以玩一把。但它和页游、端游就不太一样了。端游设计一个副本或任务,需要玩家花费很长时间,持续玩游戏。但是手游上没有这种时间,表现方式也不够。所以可能更需要关注手游的用户人群定位,如何在极短的时间内给与用户最佳的体验。
手游有一个优势,基本上它会比端游更实名,更接近人一些。比如说我的微信好友,我能确认那个人就是我的朋友或者同事。可以通过SNS的方式和他们进行交互,信赖感也会更强,游戏设计也可以基于此。
另外,和端游相比,手游的生命周期短,用户转换快,但手游的种类更多,这就需要做好用户在平台内不同游戏间转换的相关性分析,尽量承接,减少用户的流失。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18