
大数据时代的游戏运营
如何利用大数据技术挖掘海量数据的潜在价值?怎样提供更有价值的产品和服务?这是游戏行业的公共课题。在近日举行的,首届游戏运营技术论坛上,以“大数据时代的游戏运营”为主题,业内众多大公司的核心高管与技术大牛,共同探讨了大数据时代之下的游戏运营之道。其中,我们也采访到了腾讯游戏运营部总经理崔晓春先生。听他讲述对对于当前游戏运营的深刻理解。
CSDN:对于大数据的游戏运营,目前游戏圈里大家都在讨论什么话题?
崔晓春:我们看到,国内近4 年网民的增速从19%到9.9%。同样,游戏新增用户从14.7%到
3.7%,一直呈逐步下滑趋势。人口增长的红利越来越小,现在已经不像10年前,依靠一个大作就可以积聚人气,插根扁担就可以开花了。即使拥有巨大用户的平台,如果不注重运营技术的提升,进行精细化的运营,产品就算有再多的推广,找不到你的目标用户,不知道他们所想所为,留不住你的用户,所做一切都会事倍功半,产品表现平平,在游戏这个红海里将渐渐迷失方向。
图:腾讯游戏运营部总经理 崔晓春
CSDN:对于大数据的游戏运营,您觉得最需要突破的难点在哪里?
崔晓春:大数据的处理能力和真正的落地应用是大数据的2大难题。没有分布式计算、存储和实时计算的能力,一切都是空谈;同样,没有真正落地的应用,空有大数据,也等于拥有一堆垃圾。
CSDN:目前现有的数据报表,只能反映已有的历史数据趋势。大数据下,真的就能提供更丰富、更长远的未来趋势和走势吗?其中的关键点在哪里?
崔晓春:在网络游戏这个虚拟世界里,我们也可以用大数据来提升游戏的运营能力。基于用户行为的大数据,除了产出一堆运营报表之外,我们还可以将它应用于come-stay-pay模型,做精准拉新、市场规模预测、用户挽留、精准推荐等等,甚至,我们还可以通过游戏用户的行为分析,验证游戏的数值设计是否符合预期,以便迅速做出游戏内容的调整,可以说是事半功倍。
但,大数据不是起死回生,最多是锦上添花。Facebook、Google和一些公司为我们做出了一些成功与失败的榜样。若我们局限于玩家制造的数据本身,却不去思考为什么是这样,我们就很容易掉到大数据的陷阱里,弄巧成拙。
CSDN:现在腾讯一款游戏需要多少游戏运营人员?对于一个游戏运营人来说,需要具备什么素质?什么性格?什么背景?什么知识?
崔晓春:作为一个运营人员来说,第一个最不可缺少是他是否能保持良好的心态。我先将心态放在技术的前面,因为技术是可以学的,而心态是很难调整的。
第二个是技术,运营人员是一个集大成者,操作系统、网络、数据库、编程、数据分析等等,甚至项目管理方面的知识,虽然不要求样样精通,但最好都懂一点。这是他所需要具有的一些基础技能。此外,海量数据的处理能力、数学建模则是新的要求。
理论上说是开发、测试、运营的人数,基本上应该是N:1:1的关系,这是一个传统模式。但是我们可以通过平台化和模块化的建设,将运营的技术人员比例进一步缩小。一个人负责好几款游戏的上线和故障的处理,这种情况在腾讯很常见。而达到这个目标,必须通过平台化的建设,工具化的建设,自动化的建设。这个数据要看不同的公司,对运营的重视程度、公司规模、自动化程度而定。
CSDN我们讲游戏的大数据运营时,端游可能更多一点。那现在移动互联网的手游份额越来越多,不同类型的游戏,玩法不同的游戏,它们之间又有什么不同的运营特点?
首先上午有一位嘉宾分享得非常好,不是数据越多越好,数据越多了就等于没有数据了,这是一个很实际的问题。手游和端游是不太一样的。
跑酷、快消类的手游,我在等电梯的时候可以玩一把,在等地铁的时候可以玩一把。但它和页游、端游就不太一样了。端游设计一个副本或任务,需要玩家花费很长时间,持续玩游戏。但是手游上没有这种时间,表现方式也不够。所以可能更需要关注手游的用户人群定位,如何在极短的时间内给与用户最佳的体验。
手游有一个优势,基本上它会比端游更实名,更接近人一些。比如说我的微信好友,我能确认那个人就是我的朋友或者同事。可以通过SNS的方式和他们进行交互,信赖感也会更强,游戏设计也可以基于此。
另外,和端游相比,手游的生命周期短,用户转换快,但手游的种类更多,这就需要做好用户在平台内不同游戏间转换的相关性分析,尽量承接,减少用户的流失。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15