京公网安备 11010802034615号
经营许可证编号:京B2-20210330
有效应对大数据技术的伦理问题
运用大数据技术,能够发现新知识、创造新价值、提升新能力。大数据具有的强大张力,给我们的生产生活和思维方式带来革命性改变。但在大数据热中也需要冷思考,特别是正确认识和应对大数据技术带来的伦理问题,以更好地趋利避害。
大数据技术带来的伦理问题主要包括以下几方面:一是隐私泄露问题。大数据技术具有随时随地保真性记录、永久性保存、还原性画像等强大功能。个人的身份信息、行为信息、位置信息甚至信仰、观念、情感与社交关系等隐私信息,都可能被记录、保存、呈现。在现代社会,人们几乎无时无刻不暴露在智能设备面前,时时刻刻在产生数据并被记录。如果任由网络平台运营商收集、存储、兜售用户数据,个人隐私将无从谈起。二是信息安全问题。个人所产生的数据包括主动产生的数据和被动留下的数据,其删除权、存储权、使用权、知情权等本属于个人可以自主的权利,但在很多情况下难以保障安全。一些信息技术本身就存在安全漏洞,可能导致数据泄露、伪造、失真等问题,影响信息安全。此外,大数据使用的失范与误导,如大数据使用的权责问题、相关信息产品的社会责任问题以及高科技犯罪活动等,也是信息安全问题衍生的伦理问题。三是数据鸿沟问题。一部分人能够较好占有并利用大数据资源,而另一部分人则难以占有和利用大数据资源,造成数据鸿沟。数据鸿沟会产生信息红利分配不公问题,加剧群体差异和社会矛盾。
学术界普遍认为,应针对大数据技术引发的伦理问题,确立相应的伦理原则。一是无害性原则,即大数据技术发展应坚持以人为本,服务于人类社会健康发展和人民生活质量提高。二是权责统一原则,即谁搜集谁负责、谁使用谁负责。三是尊重自主原则,即数据的存储、删除、使用、知情等权利应充分赋予数据产生者。现实生活中,除了遵循这些伦理原则,还应采取必要措施,消除大数据异化引起的伦理风险。
加强技术创新和技术控制。解铃还须系铃人。对于大数据技术带来的伦理问题,最有效的解决之道就是推动技术进步。解决隐私保护和信息安全问题,需要加强事中、事后监管,但从根本上看要靠技术事前保护。应鼓励以技术进步消除大数据技术的负面效应,从技术层面提高数据安全管理水平。例如,对个人身份信息、敏感信息等采取数据加密升级和认证保护技术;将隐私保护和信息安全纳入技术开发程序,作为技术原则和标准。
建立健全监管机制。加强顶层设计,进一步完善大数据发展战略,明确规定大数据产业生态环境建设、大数据技术发展目标以及大数据核心技术突破等内容。同时,逐步完善数据信息分类保护的法律规范,明确数据挖掘、存储、传输、发布以及二次利用等环节的权责关系,特别是强化个人隐私保护。加强行业自律,注重对从业人员数据伦理准则和道德责任的教育培训,规范大数据技术应用的标准、流程和方法。
培育开放共享理念。进入大数据时代,人们的隐私观念正悄然发生变化,如通过各种“晒”将自己的数据信息置于公共空间,一些方面的隐私意识逐渐淡化。这种淡化就是基于对大数据开放共享价值的认同。应适时调整传统隐私观念和隐私领域认知,培育开放共享的大数据时代精神,使人们的价值理念更契合大数据技术发展的文化环境,实现更加有效的隐私保护。在此过程中,不断提高广大人民群众的网络素养,逐步消弭数据鸿沟。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31