
电商品质化升级 大数据成平台品控利器
作为连接消费者和商品的纽带,电商平台对商品品质的管控关系到消费者的权益能否落实。在保证品质的过程中,平台方一面要协助保障消费者权益,另一面也要对入驻的商家和商品负责,其角色的重要性可见一斑。
平台方如何更好地履行职责?京东集团无界零售赋能事业部品质提升部高级总监陈宇向媒体讲述了京东的品控经验。
加强监管 多环节引入数据支持
目前京东商城的自营商品占了较大比重,这一部分商品的管理已经非常成熟。对于第三方商家的管控成为重点。陈宇表示,对于平台入驻的第三方商家,京东考量其商品质量是否有保证会分为三步:第一,与政府监管机构沟通了解商家的信用情况;第二,会审查申请经营的品类资质;第三,在经营过程中的监管体系。前两步主要是在入驻之前进行,第三步则是成功入驻之后。
为了更加有效的进行管控,京东在多个环节引入了大数据。例如,京东会跟一些政府机关打通数据库,拿到类似于黑名单或者违规经营的名单,杜绝这样的商家入驻平台。同时还有大量的用户行为数据的收集和整理。
“电商只能靠大数据,只能靠系统化,必须是在研发和技术上大量投入。”陈宇说,“希望未来借助国家机构的数据,一起与国家共同建立企业诚信和个人诚信档案库。”
海外购是公认的品质控制难点,在这一点上,京东从2017年9月份开始,对全球购进行了一次大规模的质量提升行动,把店铺重新入驻的规则包括资质进行了梳理。陈宇认为,最终,京东所定义的全球购,是尽可能的去跟品牌方合作,引进国外当地的品牌方。同时通过海外机构,包括与当地的使馆和商业协会合作,让他们来协助认证那些在京东开全球购的店铺。
赋能商家 除劣同时更要扶优
“京东不仅仅只是一个平台,而希望能带给商家更多,希望能以我们的能力去向商家输出”,陈宇表示。京东秉持对假货的态度零容忍,但是对于质量不合格的产品,处罚之外,京东会帮助商家一块找问题的根源。
以标识或者标签不规范最后抽检后定义商品不合格为例,规模较大的工厂对于规范的理解没有问题,而中小的企业质量管理人员或者生产人员对规范理解可能存在一定的偏差,这些问题是通过平台帮助商家改善的。
“我们去年开始做了标签专项提升的试点,下半年试点效果比较好,今年会大力推广以帮助我们平台上的生产企业和第三方将标签规范化。” 陈宇说。
对于京东来讲,前几年更多关注于如何在这个平台去防范一些不合格的商品和不规范的商家,也就是“除劣”,而今年关注的重点在于怎么把优秀的东西展示出来,让用户能很容易的选到,也就是“扶优”。商品质量的把关一定要严格,但是同时把更多优质的商品推荐给用户,让其成为消费者的首选,为品质管控提供了新的思路。
“原来光去看排名,或者竞价广告这种是不可取的。现在京东对于这个品类定好标准,搜索加一些权重,相当于京东来认证优质的企业和产品。”陈宇表示,一方面,用户买的时候这些商品会有京东的背书和把关,会更省时更省心。另一方面,购买次数越多,京东后台就会有更多数据,有些数据很高的商品当月的销售量涨了百分之五、六百,让优质的商品更受欢迎。
随着315的临近,品质问题的关注会达到一个新的高度,电商打假刻不容缓。陈宇呼吁:整个中国电商应该是一个整体,希望各个平台联起手来,不要各自为战,而是形成一种联盟,让一地造假在多地无法生存。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01