
大数据将推动零售业技术变革
建设强大的数据中台,实现线上线下数字化打通,重构“人、货场”,是新零售的重要内涵。业内人士指出,2018年将是大数据从技术阶段向应用阶段高速发展的一年,大数据未来在物联网、区块链、智慧城市、AR、VR、AI、语音识别等方面都值得关注,这在不久的将来或深刻改变零售业的未来。
线下零售大数据应用刚起步
近日高鑫零售公布年报,2017年实现营业收入1023.20亿元,同比增长1.9%;2017年净利润为30.20亿元,同比增长14.9%。这是阿里入住高鑫新零售的第一年,招商证券指出,虽然阿里入股高鑫在短期内并未给高鑫业绩带来大幅改善,但是阿里的互联网基因和大数据资源加速了高鑫的线上线下整合。
在阿里与高鑫的合作中,目前仍是线上大数据指导线下商品管理,大润发华东20个城市的167家门店上架了天猫超市百万件商品,这些商品由阿里大数据根据周边消费者喜好筛选商品,并由天猫供应链优化供货方案。招商证券指出,虽然这些商品销售状况有好有坏,但整体上调整了门店的经营体系和业务链路。
基于模式和技术优势,线上零售数据的采集和大数据技术的应用已相当成熟,相比之下,线下零售大数据技术的应用还处于起步阶段。中国连锁经营协会会长裴亮曾指出,大数据技术在零售业的应用还没有发挥出来,目前来看,零售企业不掌握大数据,如何与握有大数据的企业进行合作,共同开始大数据在零售业的应用,还处在探索的过程中。
从发展现状来看,线下零售应用大数据技术首先面临的技术难点是数据采集。专家指出,线下零售店由于技术限制和消费者更加碎片割裂的行为,很难根据消费者ID数据与商品销售、店铺库存、物流等数据进行打通连接,尤其消费者店铺行为偏好数据的获取。
这方面,同时拥有门店优势和互联网基因的零售企业将占据优势。苏宁易购向中国证券报记者表示,在苏宁易购云店内的已经开始全面打造线下门店客流数据分析的“苏宁北斗”系统。该产品的上线,标志着苏宁易购在门店端开始采用类似线上页面运营的流量运营逻辑,“从用户进店以及在门店内的动线变化,进行线上UV到四级页面浏览路径的分析,对门店商品布局、用户习惯分析将有巨大的帮助”。预计到2019年,苏宁易购将会把人脸识别系统和北斗系统相结合,使监测数据更加精准,并将为后期会员服务、会员运营的优化提供数据依据。
推动零售业技术变革
苏宁控股集团董事长张近东表示,2018年将是大数据从技术阶段向应用阶段高速发展的一年,“大数据未来在物联网、区块链、智慧城市、AR、VR、AI、语音识别等方面都值得关注,这在不久的将来或深刻改变零售业的未来”。
中国电子商务研究中心主任曹磊表示,过去数据只在销售端和营销端驱动,今后还将向商品端、供应链端、仓储物流乃至生产端来进行全方位驱动。过去商品和用户是零售商和电商最核心的资产,在大数据时代,大数据将成为他们最核心的资产。
基于对线上线下数据打通的重视,2017年国美落地蒲公英计划,完成国美在线、国美Plus、国美管家、国美海外购、国美酒窖整合成国美APP,连接线上线下,以互联网为基础、数据为核心,打造线上交易、线下体验的共享零售双平台。通过实施蒲公英计划,国美线上线下的供应链数据、交易数据、服务数据、会员数据全面打通,汇聚为国美的数据中台,形成大数据工厂。
在大数据的支持下,国美升级了后服务体系,推出“扬帆计划”,实现订单配送、安装服务、维修服务、客户服务全周期的可视化、标准化,打通厂家后台数据,首创保内维修一键预约功能。
从整个产业链来看,大数据的最高效应用将是从生产端开始就实现定制,对此,已有零售业开始布局。国美将大数据应用于供应链,用C2M反向定制、家生活品类和智能产品横向延展、驱动精准选品和营销,进而与第三方供应链形成补充,提升零售效率,满足消费者品质化、个性化、智能化的产品需求,促进品质升级,优化商品结构。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29