
大数据将使社会发展变革
今年以来,“大数据”一词被越来越多的人提到。从表层意义上看,人们用它来描述和定义信息爆炸时代产生的海量数据。实际上,“大数据”的渗透能力远超人们想象,不管是在物理学、生物学、环境生态学等领域,还是军事、金融、通信等行业,数据正在迅速膨胀,没有一个领域可以不被波及。“大数据”正在改变甚至颠覆着我们所处的整个时代,对社会发展产生了方方面面的影响。
大数据下的生活方式变革
在大数据时代,用户会越来越多地依赖于网络和各种“云端”工具提供的信息作出行为选择。从社会这个大方面上看,这有利于提升我们的生活质量、和谐程度,从而降低个人在群体中所面临的风险。比如美国的网络公司Farecast通过对2000亿条飞行数据记录的搜索和运算,可以预测美国各大航空公司每一张机票的平均价格的走势,如果一张机票的平均价格呈下降趋势,系统就会帮助用户作出稍后再购票的明智选择。反过来,如果一张机票的平均价格呈上涨趋势,系统就会提醒用户立刻购买该机票。通过预测机票价格的走势以及增降幅度,Farecast的票价预测工具能帮助消费者抓住最佳购买时机,节约出行成本。未来,通过对大数据信息的整合,这项技术可以广泛应用到其他领域,比如宾馆预订,贵金属、房产的购买等,只要这些领域内的产品差异不大,同时存在大幅度的价格差和大量可运用的数据,就都可以应用这项技术。人们应用这些专业网站提供的预测价格,在进行购物和消费时也会变得越来越理性。
从互联网浩瀚的数据宝藏中获取资料进行自动运算处理的计算机工具正在快速普及,处在一线的是正在迅速发展的人工智能技术,像自然语言处理、模式识别以及机器学习。那些人工智能技术可以被应用到多个领域。现在,Google的无人驾驶汽车已经在加州行驶了几千公里,未来我们可以通过人工智能与汽车产生互动,从而使自动驾驶得以实现,当然,这些都是基于大量数据解析的结果。又如,越来越智能化的手机语音助手随着人们提供的数以百万计的数据,正变成人们的个人小助理,为用户提供提醒、天气预报、收发邮件、行程安排等多种服务,未来所能解决的问题也越来越多。
大数据下的营销方式变革
有数据显示,Twitter平均每天产生3.4亿条消息,而Facebook每日则有40亿条信息在扩散。随着社交网络的全球扩张,数据大爆炸正在改写营销规则。社会化媒体的广泛应用带来了海量的数据。数字科技的发展越来越深刻影响到营销的方法论以及营销的效率,这个时代已经完全不是此前单纯的数字媒体化年代。网络媒体正在从单纯的内容提供方进化成开放生态的主导者,大数据时代的社会化营销重点是理解消费者背后的海量数据,挖掘用户需求,并最终提供个性化的跨平台的营销解决方案。
在大数据时代,整个营销系统的变量越来越多,各种新势力与传统力量在系统中不断耗散与协同。这些日益增加的复杂性最终导致了整个系统的目标慢慢开始失焦,那些在传统营销时代原本理所当然的方法论开始变得不确定。未来,将会有越来越多的企业通过各种用户产品、数据库对用户行为进行一系列的数据洞察、分析和挖掘,深度剖析每一个用户族群,通过差异化标签在品牌和受众之间建立社会化的营销关联。而基于对大数据营销价值的挖掘成为在线营销领域面临的课题,也就是企业可以通过追踪用户浏览网页及购物习惯智能地提升精准投放广告的能力,从而得到更高的投资回报率。
大数据下的医疗方式变革
在公共卫生和医疗领域,“大数据”的预测有望为人们提供强大的健康保障。通过对上万名自闭症患者家庭背景、居住地区、父母饮食、环境差异等数据的收集,我们或许可以发现这种疾病的成因。研究人员已发现,Google搜索请求中诸如“流感症状”和“流感治疗”之类的关键词出现的高峰要比一个地区医院急诊室流感患者增加出现的时间早两三个星期(而急诊室的报告往往要比浏览慢两个星期左右)。通过类似现象的判断,我们可以提前预测疾病的爆发,更有针对性地作出预防。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15