京公网安备 11010802034615号
经营许可证编号:京B2-20210330
云和大数据促进互联网信息消费
在云计算成为基础资源的背景下,基于大数据的互联网信息服务,能够帮助企业和个人更好地预测未来和进行决策,从而成为促进信息消费的主要推动力。例如已有产品开始通过大数据分析互联网信息来判断“网络金融民意”,那么,大数据究竟是如何促进互联网信息服务消费的呢?
一切皆是数据皆可量化
在大数据时代,不仅数字、文本都是数据,甚至身份、位置都是数据,是有价值、有市场的商业数据。
以往,我们讲的数据往往只是数字,因为文本描述是难以进行量化数据分析的。但在大数据时代,不仅数字、文本都是数据,甚至身份、位置都是数据,是有价值、有市场的商业数据。例如,一个学生出现在长江商学院的培训课程,说明他可能有贷款的需要,一个白领出现在托福考试的考场,说明他可能有境外金融或者旅游服务的需要;在积累足够多的样本后,这些身份、位置所反映的行为均可量化为高价值的金融服务数据。这种信息服务直接拉近了金融供求双方的距离,降低了金融市场拓展的成本。如何分析很重要
有些数据是表格化的,数据与项目一一对应,我们说这样的数据是结构化的,便于分析。但在大数据时代,我们获得信息的渠道是多样的,可能是文章下的评论、微博上的一句牢骚等等,这样的数据就很难采用结构化的数据库进行存储分析。而且,相对于小数据和精确性的时代,大数据因为更强调完整性和混杂性,数据分析过程中的损失就变得不再那么重要,只要建立合适的分析模型,就可以获得有价值的数据,比如微软创投加速器的一个企业开发的“股票雷达”,通过它可以收集各类网络上关于股票的预期信息,进而汇聚成为大众群体对某具体金融产品的信心预期,反映“网络金融民意”,让股民能了解市场上更多的真实情况,缓解普遍存在的信息不对称,并为股民做投资决策的时候,提供重要参考。
人们在处理海量的非量化、非结构化信息时,会造成数据的遗失甚至扭曲,往往可以得出不尽相同的结论。美国一家金融服务机构的信用卡部门,通过大数据分析,获得了每季度200%的业务增长。这个项目为每个用户建立了30多个参数进行分析,只为找出当前信用卡欠款,但具备潜在偿还能力的客户。因为数据分析模型的成功,此项目取得了令人满意的效果。在大数据时代,信用记录、社交媒体、搜索引擎等数据信息日趋完备,有待不断创新的数据分析模式进行挖掘。
云让大数据得以普及
在云计算成为基础资源的今天,信息存储不再是瓶颈,更多数据挖掘项目可以得到施展。
数据不是今天才有,也不是今天才“大”起来。但过去一些数据挖掘研究虽然有了思路,却限于存储、计算资源等硬件条件无法实行。2006年前后,我国某大银行,希望通过关联交易数据的分析提高他们对公信贷业务的精确度,估计信息量是20PB的级别。当时一家银行历年的贷款报告,财务发展分析报告、图表、基本财务信息、公司信息加起来也就100G,相比之下,20PB可谓天文数字,项目因为成本而未能良好执行。但在云计算成为基础资源的今天,信息存储已经不再是大数据分析的瓶颈,一些原有的数据挖掘项目可以得到施展,帮助行业开辟业务新天地。
例如,还有一家名为91金融超市的公司在微软Windows
Azure云平台上将金融中介服务进行互联网化,打通了金融机构和个人消费者之间的通路,并通过对个人数据和需求的分析,将最合适的金融产品推送给个人,或者将个人需求精准匹配给相应的机构。这一模式被资本市场、机构和消费者高度看好,他们也因此刚刚拿到了6000万元的风险投资。
在云和大数据的支持下,将有越来越多的新型信息服务模式得以建立。大数据信息服务影响和促进社会各个领域,基于金融领域的精准信息服务创新,只是最容易被人们理解的应用领域之一。随着云和大数据技术的日益普及和深化,各个行业都将迎来信息消费的黄金时代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20