
用大数据思维发现人才评估人才管理人才
2017年12月,中共中央政治局就实施国家大数据战略进行第二次集体学习。习近平总书记在主持学习时强调,要运用大数据提升国家治理现代化水平。要建立健全大数据辅助科学决策和社会治理的机制,推进政府管理和社会治理模式创新,实现政府决策科学化、社会治理精准化、公共服务高效化。习近平总书记的重要论述,为大数据应用的落地指明了方向,对我们应用大数据提升人才决策效果具有非常重要的实践指导意义。
在位于呼和浩特市和林格尔县境内的中国电信云计算内蒙古信息园,一名技术人员在演示大数据应用。新华社发
用大数据思维模式实现人才决策科学化
正确认识大数据是实现大数据应用的前提。大数据应用不仅仅是对海量规模的数据进行存储、处理和分析,更重要的是采用新的角度去看问题。只有采用新的大数据思维方式、运用大数据技术改进传统的人才决策方式,才有助于形成基于大数据思维的人才决策新范式,实现人才决策科学化。
运用大数据辅助人才决策,是对人才决策方式的巨大变革。长久以来在人才工作中,我们更多根据决策者或者诸如面试专家等人的主观判断而做出各种人才决策,很少对人才决策过程进行量化分析。大数据技术的发展拓展了数据来源,使我们可以对结构化和非结构化的数据进行全面分析,从而实现人才决策的定量化,减少因决策者主观判断可能带来的失误。
用大数据技术进行有针对性的量化人才决策
结合人才管理实际,大数据技术可以在以下环节有效落地:
一、大数据技术可以通过以下两点提升人才引进决策效果:其一,采用大数据技术发现人才。通过大数据技术构建人才发现平台,纳入符合我国新时代发展需要的高端人才,并实行全面动态管理。比如可以从行业协会、学会公开网站或者国内外著名大学官网搜集相关学者的基本信息及其科研成果、行业评价、科研排名等,丰富完善高级经营管理人才大数据库。采用大数据技术进行人才发现工作,有利于提高人才发现工作效率。
其二,可以采用大数据技术对人才进行全方位评价,作为人才引进决策时的参考。比如,我们可以通过大数据全方位搜集人才的各种常规数据,以及人才在微信、微博或其他社交媒体留下的“痕迹”,形成人才大数据资料库。在此基础上,通过数据分析专家的结构化建模,从而对人才的相关信息进行分析。比如我们可以构建一个基于特定需求的人才分析模型,涵盖人才的专业能力、人才的个人兴趣等。根据这些分析,我们会得到涵盖人才性格倾向、团队合作、人际沟通能力、发展潜力等方面的分析报告。
二、习近平总书记指出,要“聚天下英才而用之”,可见“聚才”的目的是“用才”。“用才”关键的环节是为人才设定合理的目标、通过考核评价实现人尽其才的目标。大数据辅助人才使用决策集中体现在通过大数据技术对人才使用过程中的数据进行挖掘,适时搜集人才绩效实现过程中的各种数据并进行分析,把人才考核工作常态化、实时化,增强人才考核的科学性。在此方面,一些跨国公司走在了前面。这些公司强调经理和员工之间要进行持续的、高质量的沟通和反馈,有的公司甚至规定直线经理每周都要和员工进行绩效沟通,随时了解绩效进展,员工也可以随时征求直线经理的意见。与传统的事后绩效考核相比较,实时的绩效沟通可以让双方了解绩效实施进展、绩效实施过程中的不足并及时修正错误。
我们在人才考核中也可以借鉴这个做法。利用大数据技术搭建人才绩效考核系统,将人才的日常工作表现纳入考核范畴,实现人才绩效的实时反馈、及时发现绩效问题、提高人才使用效率。
三、大数据技术可以通过全面收集人才流动信息,及时掌握人才流动数据并对人才流动趋势进行预测,辅助人才决策。从宏观方面来看,运用大数据技术整合不同渠道人才就业数据,可以及时掌握全国人才流动方向、流动的频次、人才流动中的行业转换或职位转换信息,并结合区域经济社会发展态势进行深入分析,预测未来人才流动趋势,提供给政府部门的宏观管理者作为决策参考、引导人才的合理流动。从微观方面来看,人才流动预测有助于微观用人主体防微杜渐、及时了解人才流动的原因,改进用人单位的人才管理。在此方面,一些企业已经开始进行尝试,比如根据对员工性别、年龄、工作年限等方面的数据进行收集和分析,来预测员工的离职倾向,并针对员工离职倾向分析结果及时采取相应的保留措施。微观用人主体的人才流动预测有助于优化人力资源管理效果、降低人力资源成本、强化用人主体在人才争夺战中的竞争优势。
要解决人才数据收集与建立分析模型的问题
要解决如何获取人才大数据的问题。数据收集是进行大数据分析和辅助决策的前提。尽管目前我国很多地方都在搞人才信息系统建设,但是还无法做到全方位记录人才成长全周期的数据,人才信息系统的分析功能还有待加强。另外,不同地区、不同行业的人才系统并未打通,不利于利用大数据技术进行深层次的分析。我们可以通过建立统一的数据收集系统,解决人才数据统计不准确、人才引进需求不明确、人才使用记录不完整等问题。建立全国统一的、共享的人才大数据平台,充分利用大数据技术,盘活人才管理,辅助人才决策。
要解决人才大数据分析指标体系建设问题。大数据及其相关技术的快速发展,为全面系统地通过人才分析辅助人才决策提供了可能。从我国目前人才统计的宏观口径来看,大部分人才统计指标属于静态的、描述性指标,比如对人才规模、素质、结构等的数量描述,缺少对人才使用和管理过程中的场景进行分析的指标以及针对不同区域、不同部门、不同行业的特定的人才分析指标。这种情形下,就无法去收集更详细的人才数据,也谈不上进行深层次的人才大数据分析了。从微观层面看,大部分企事业单位的人才分析指标也没有与人才管理场景相结合,并未形成统一的微观人才分析指标体系。更为重要的是,宏观、微观层面的人才分析指标并不能形成有效对接,极易造成人才统计脱节现象,不利于对人才进行全方位管理和分析。因此,如何构建一整套包含宏观人才规划与微观人才管理的人才分析指标体系,建立适合我国人才工作实践的人才分析学,对大数据辅助人才决策的落地具有很重要的现实意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15