京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据要充分利用,但更要保护用户隐私
全球进入移动互联网时代后,一个巨大进步是一切活动都在往移动互联网这个舞台上转移。所有社会活动、金融交易等都在网络上留下了痕迹或者说有迹可循。由此带来的进步是革命性、历史性和颠覆性的。
通过对人们在网络上留下的印记进行采集、挖掘、提炼与分析,可以分析出背后许多经济金融文化等有巨大价值的东西。思想支配行动,行动又反映思想。从网络上的留印行动中挖掘分析后就可以基本得出其思想所在,从网络上对一个主体各个方面留痕进行大挖掘、大计算、大分析基本就可以摸清楚预测出来这个主体想要什么,需求何在?这就可以分类施策、细分客户、精准营销。这个商业价值是无限的。
此前,马云曾讲过,大数据、云计算诞生以后,经济或可以进入到计划经济体制里。计划经济与市场经济都是配置资源的手段。计划经济之所以比市场经济在效率等方面低、弊端多,不在于计划经济体制本身,而在于没有技术等手段与能力来实现计划经济的高效性与准确性。现在有了网络,有了网上大数据的积累,有了云计算,或给计划经济以重新复活的机会,给了计划经济体制优越性以证明的机会。插上大数据、云计算翅膀的计划经济或比市场经济更加高效,更加精准,对市场的周期性破坏或就此消失。
这就是所说的大数据是一座大金库的原因。不过,这个大金库要充分挖掘与发挥出来的话,一个大前提是要对大数据进行充分采集、挖掘、整理、甄别、分类、分析等。这个大数据中包括你我他几乎全部在网络上的百姓民众消费者。也就是说,每一个在网络上留下印记即数据的你我他都是被分析的对象。这就牵扯到另一个问题:隐私保护问题。
近期,用户在查阅自己的支付宝年度账单时默认勾选“我同意《芝麻服务协议》”这件事引起一阵波澜,蚂蚁金服也回应道歉了。无论处于什么好意,默认勾选“同意”肯定是不合适的。不过,从这件事中的一些争论反应看,确实存在着一些对大数据在采集使用与隐私保护上的较大偏差甚至是糊涂认识,需要以理性的思考予以梳理厘清。
只要你在网络上留下了印记即数据基本上没有隐私可言。即使线下交易也基本如此。例如:过去你到银行办理存款贷款汇款,你到房管所办理房子登记过户,你到派出所办理户口入户迁移,你办理入学入托上大学等等都要登记家庭、身份证、电话等基本情况与信息。现在在网络上同样如此。只要存在这些情况,你的信息或者隐私就已经裸露出来了。
这里一个关键问题必须甄别清楚,每一个人在网络积累的大数据不让采集挖掘分析使用可能是做不到的。关键在于如何使用?在于使用后一定要为客户的隐私以及普通信息数据保密。保密,是问题的关键所在。只要有交易,就一定要使用你的数据。比如,你有贷款信用需求,这个金融交易一定要充分使用你的数据信息的。关键在于使用以后,不能泄露给第三方。所谓的保护隐私数据,主要的问题就在这里。
非金融信用业务也有保护数据信息隐私问题。你去一个网站注册、你想使用共享单车都需要注册相关信息数据的。注册这些数据信息以后,你不能说不让网站等挖掘使用你的数据信息,注册时也等于是一种交易,除非你不注册。关键问题还在于,网站、共享单车等使用客户数据后,一定要为客户保密。
这里面牵扯第三方使用数据如何办的问题。我个人认为,牵扯所有经济体的金融信用数据问题,各大平台包括央行在内都可以共享信用等级数据。目的在于形成一种“有信走遍天下,无信寸步难行”的社会氛围与高压态势,使有信用者得以提倡褒扬,无信用者如过街老鼠人人喊打。全社会形成:信用贵如金子,无信耻辱透顶,这才能形成信用的正向激励机制。
第三方使用其他数据,网站等平台应该通过协议约束征得被采集人的同意。同样,必须有约束条款,第三方也必须为客户数据信息保密。
总之,大数据这座金矿必须充分利用使用与挖掘开采,不能造成大数据资源的闲置和浪费,同时,使用以后关键在于要保护好被采集数据者的数据信息以及隐私。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27