京公网安备 11010802034615号
经营许可证编号:京B2-20210330
新一代信息技术发展新趋势
近几年媒体上频繁出现“新一代信息技术”这一概念。新一代信息技术,不只是指信息领域的一些分支技术如集成电路、计算机、无线通信等的纵向升级,更主要的是指信息技术的整体平台和产业的代际变迁。上世纪80年代以前普遍采用的大型主机和简易的哑终端,被认为是第一代信息技术平台。从上世纪80年代中期到本世纪初,广泛流行的是个人计算机和通过互联网连接的分散的服务器,被认为是第二代信息技术平台。近10年来,以移动互联网、社交网络、云计算、大数据为特征的第三代信息技术架构蓬勃发展。概括地说,新一代信息技术,“新”在网络互联的移动化和泛在化、信息处理的集中化和大数据化、信息服务的智能化和个性化。新一代信息技术发展的热点不是信息领域各个分支技术的纵向升级,而是信息技术横向渗透融合到制造、金融等其他行业,信息技术研究的主要方向将从产品技术转向服务技术。以信息化和工业化深度融合为主要目标的“互联网+”是新一代信息技术的集中体现。
网络互联的移动化和泛在化。近几年互联网的一个重要变化是手机上网用户超过桌面计算机用户,以微信为代表的社交网络服务已成为我国互联网的第一大应用。移动互联网的普及得益于无线通信技术的飞速发展,4G无线通信的带宽已达到100Mb。我国提出的TD—LTE制式被认定为4G无线通信的国际标准之一,已率先在国内部署,这是我国从通信大国走向通信强国的重要机遇。正在研发的5G无线通信不只是追求提高通信带宽,而是要构建计算机与通信技术融合的超宽带、低延时、高密度、高可靠、高可信的移动计算与通信的基础设施。当前,基于IPv4协议的互联网在可扩展性、服务质量和安全性等方面已遇到难以突破的瓶颈,近来各大企业和研究者们正在积极发展软件定义的互联网和以内容为中心的互联网,这可能是未来互联网发展的重要方向。过去几十年信息网络发展实现了计算机与计算机、人与人、人与计算机的交互联系,未来信息网络发展的一个趋势是实现物与物、物与人、物与计算机的交互联系,将互联网拓展到物端,通过泛在网络形成人、机、物三元融合的世界,进入万物互联时代。
信息处理的集中化和大数据化。上世纪末流行个人计算机,由分散的功能单一的服务器提供各种服务,但这种分散的服务效率不高,难以应付动态变化的信息服务需求。近几年兴起的云计算将服务器集中在云计算中心,统一调配计算和存储资源,通过虚拟化技术将一台服务器变成多台服务器,能高效率地满足众多用户个性化的并发请求。过去长期以来计算机企业追求的主要目标是“算得快”,每隔11年左右超级计算机的计算速度提高1000倍。但为了满足日益增长的云计算和网络服务的需求,未来计算机研制的主要目标是“算得多”,即在用户可容忍的时间内尽量满足更多的用户请求。这与传统的计算机在体系结构、编程模式等方面有很大区别,需要突破计算机系统输入输出和存储能力不足的瓶颈,未来10年内具有变革性的新型存储芯片和片上光通信将成为主流技术。同时,社交网络的普及应用使广大消费者也成为数据的生产者,传感器和存储技术的发展大大降低了数据采集和存储的成本,使得可供分析的数据爆发式增长,数据已成为像土地和矿产一样重要的战略资源。人们把传统的软件和数据库技术难以处理的海量、多模态、快速变化的数据集称为大数据,如何有效挖掘大数据的价值已成为新一代信息技术发展的重要方向。大数据的应用涉及各行各业,例如互联网金融、舆情与情报分析、机器翻译、图像与语音识别、智能辅助医疗、商品和广告的智能推荐等等。大数据技术大概5—10年后会成为普遍采用的主流技术。
信息服务的智能化和个性化。过去几十年信息化的主要成就是数字化和网络化,今后信息化的主要努力方向是智能化。“智能”是一个动态发展的概念,它始终处于不断向前发展的计算机技术的前沿。所谓智能化本质上是计算机化,即不是固定僵硬的系统,而是能自动执行程序、可编程可演化的系统,更高的要求是具有自学习和自适应功能。无人自动驾驶汽车是智能化的标志性产品,它融合集成了实时感知、导航、自动驾驶、联网通信等技术,比有人驾驶更安全、更节能。美国已有几个城市给无人驾驶汽车颁发了上路许可证,估计10年内计算机化的智能汽车将开始流行。德国提出的工业4.0,其特征也是智能化,设备和被加工的零件都有感知功能,能实时监测,实时对工艺、设备和产品进行调整,保证加工质量。建设智慧城市实际上是城市的计算机化,将为发展新一代信息技术提供巨大的市场。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20