
大数据助天文学研究风光无限
战国时期,一本记载着800多颗恒星名字和位置的《石氏星经》,是祖辈们探索宇宙的秘笈,被誉为最古老的天文数据库。
2400年后,美国天文学家发现了一颗超高速星。有趣的是,这个发现并非由天文观测获得,而是利用中国虚拟天文台公布的数据“算”出来的。
事实上,除了科学家,普通百姓也能借助大数据、云计算等高科技来实现“天文突破”。此前,安徽合肥一名年仅10岁的小学生廖家铭,在没有任何观测设备的前提下,通过中国虚拟天文台的数据发现了一颗超新星,是迄今为止全球年龄最小的超新星发现者。
“打电脑”的天文学家
“由于我们观测的是宇宙中比较遥远的星体,到达地球的信号很弱,很容易淹没在城市的灯光里,因此天文望远镜一般都建在大山深处。”从北京市区驱车前往位于河北省的观测站,是中科院国家天文台郭守敬望远镜运行和发展中心常务副主任赵永恒的工作常态。
然而,从2017年4月份起,赵永恒把更多时间花在了另一项工作上:“打电脑”,因为他加入了一支特殊的“尖兵部队”—— 由国台联合阿里云成立的科技指导委员会,成了首批受聘专家之一。
毕业于河北师大的赵永恒,走出校园后就进入了中科院国家天文台工作,成为一名“追星人”,除了观星星,还有一大爱好就是玩电脑。
十几年前,作为国台最懂电脑的研究员,赵永恒用一台从中关村市场淘来的旧电脑鼓捣出了一个网站,这就是中国虚拟天文台的雏形。“我们的想法很简单,把国内外天文望远镜的观测数据放到这个平台上。”
广袤的宇宙意味着海量的数据,这也是天文学不同于其他学科的重要特征。
以赵永恒负责的LAMOST郭守敬望远镜为例,它可以同时观测四千个天体,相当于同时启动四千台天文望远镜。到目前为止,已经观测了将近3000个天区,收集了超过600万条光谱数据。
“天文学已经进入大数据时代,两年数据就翻一番。一个团队或者一个国家,不可能及时地把所有数据都分析完,所以数据开放程度越高,被研究的机会就越多,产生的科学成果就会越多。”赵永恒说。
开放共享的天文数据
正是基于这样的思考,2016年,中科院国家天文台与阿里云达成了战略合作,引入最前沿的云计算、大数据技术,实现天文数据开放共享。
“今天不懂互联网几乎是寸步难行。”每次跟阿里云的技术团队开会,赵永恒都感觉收获良多,“15年前,我们只有一个简单的网站,如今中国虚拟天文台主节点迁移到云端后,成为一个集成超过500TB的科学数据、1.5PB的存储能力、700多Tflops计算能力和100多种软件的超级平台。”
赵永恒希望,未来的虚拟天文台能够成为全世界天文学者和爱好者获取天文数据、开展天文研究、进行科普教育的综合基地。
“科学离不开技术,技术也离不开科学。”正如赵永恒理解的,国家天文台联合阿里云成立的跨界“尖兵部队”,由最懂天文的技术专家和最懂技术的天文学家组成。
“我们从哪里来?时间有没有起点?宇宙是怎样诞生和演化的?要想回答这些终极问题,需要建立更加庞大的天文数据库,而技术则是通往未来的钥匙。”赵永恒表示。
将天文科普进行到底
为了给国内的天文爱好者提供一个稳定地展示自己才华和交流的平台,在中科院国家天文台—阿里云天文大数据联合研究中心主任崔辰州等的多方努力下,国家天文台LAMOST大科学工程设立了一台专门无偿为天文爱好者和业余天文组织提供主页空间的服务器——“宇宙驿站”,并于2002年3月12日对外开放。
2005年中国互联网协会大会上,“宇宙驿站”荣获组委会特别提名奖,理由是“走出了一条独特的网络科普道路”。
“宇宙驿站”是国内目前唯一一台专为天文科普服务的网络服务器。服务器在天文爱好者心中的地位日渐升高,国内许多爱好者和组织把自己的主页建立或迁移到这台服务器上。
2017年1月,“国家天文台—阿里云天文大数据联合研究中心”成立。前不久,中国虚拟天文台主节点和郭守敬望远镜巡天数据成功上云,“宇宙驿站”天文科普网站群100多个天文科普网站同时上云,更好地服务广大天文爱好者。
崔辰州认为:“天文学是名副其实的‘大数据’科学,每天由天文观测设备捕捉到的海量天文数据,不仅是科学研究的必需品,也是宝贵的科学普及和教育资源。”
“过去由于技术限制,这些数据无法得到充分的利用和分享,而在互联网+时代,云计算和大数据技术的成熟,加速了学科发展和大众科普。”崔辰州表示,“因此,天文科普教育工作必须由数据、由新技术来驱动,通过互联网把国际、国内的专家以及广大公众连接起来。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29