
大数据融合彰显价值 跨界链接产业变革
12月7日电 5日,由国家发改委牵头组织的“中国数据创新行”主要活动——2017中国国际大数据挖掘大赛复赛在北京举行。复赛现场,来自江苏的“心脏康复大数据平台”项目正在台上为专家评委们带来精彩的路演,并博得阵阵掌声。
作为全国首个数据挖掘的国际性赛事,从今年3月赛事启动至今,已经吸引了全球19个国家和地区的万余支项目团队报名参赛。经过评委专家精心筛选,有200支项目入围复赛。据了解,大数据挖掘大赛在结束北京的复赛单元后,将在贵阳举行总决赛暨颁奖礼。
赛事评委、清华大学数据科学研究院执行副院长韩亦舜在纵览复赛项目后表示,大数据技术的渗透融合,催生了新的行业与领域,也给更多的传统行业带来了新生机。“数聚华夏 创享未来”,通过技术引领、深度融合提高实体经济发展质量,是新时期的重要探索方向,同样是本次复赛的重要主题。
数据融合 深挖“跨界”富矿
据“心脏康复大数据平台”项目负责人高锐介绍,项目通过案例大数据智能管理(Big Case)、数字心肺步行试验(DCW)、康复训练和检测设备(CTIM)等核心技术为患者提供心脏康复评估、处方、训练监测等心脏康复全流程解决方案,实现三期心脏康复的无缝对接。“我们以临床案例为基础,首创案例大数据智能管理系统,根据病人数据、健康数据自动进行分析,来提出处方建议、知识推送、服务组织,能极大程度降低失误率。”
来自深圳的“城市交通大数据在线检测与动态仿真系统”项目同样也是数据融合与挖掘利用的典型案例。项目主讲人周勇告诉记者,他们正致力于打造一个面向精细化管控和全方式智慧出行的实时在线仿真系统。系统基于移动车辆GPS、手机信令、地磁流量、视频图像等动态大数据和静态数据的多源融合,通过现实交通系统与虚拟交通系统的互动学习,以动态OD估计、中微观交通流仿真为核心,结合无人机航拍与图像识别技术对驾驶行为参数的标定,实现车道级的动态仿真与高精度的实时在线推演。目前,项目已经在深圳市福田区、新洲路和深南大道等案例中实现了深度应用。
“如何融合多元数据资源,跨越产业转型升级壁垒?这些项目给出了亮眼的答案。项目通过挖掘潜在于多种产业中的多类型数据,让大数据技术与产业发展得到深层的融合。”赛事评委、赛仕软件研究开发(北京)有限公司总经理刘政认为,多个参赛项目的出现正是我国大数据与全产业深入融合发展的具体体现。
比赛现场,各项目选手紧扣大赛主题“唤醒沉睡的数据”,从平台搭建、技术创新、数据有效利用、应用实现等多个方面,全面展现了数据融合的新前景和大数据发展的新进程。
数据挖掘是数据应用的核心,是发现新应用、创造新价值的关键,是数字经济最核心的动力,而融合则是全面激发大数据价值的最佳途径。赛事评委、TCL股权投资有限公司董事总经理游浩认为,“互联网+是大数据应用的幼年期,从技术、数据、人才、资金等资源匹配程度来看,目前大数据已经进入全面融合的新阶段探索。”
数据渗透 成为“转型”支点
多位参赛选手表示,吸引他们参赛的,是组委会提供的一系列政府开放的数据源,这其中包括14个政府开放数据平台的11600多个数据集,1600多个数据接口。“数据就是生产资源。我们的项目涉足领域广泛,得到更多领域数据的支持,才能够进一步加速应用与多领域的融合开发和完善。”
“共享开放是大数据应用的重要基础,共享的同时数据的价值也可以无限放大,通过多种形式的开发得到全方位渗透,这是数据开放的重要目的,甚至是大数据发展的重要落脚点。” 云上贵州大数据产业发展有限公司首席技术官秦晓东曾在大赛启动仪式上表示。
赛事评委、清华大学数据科学研究院执行副院长韩亦舜在分析大数据与全产业融合趋势时表示,党的十九大报告提出加快发展先进制造业,推动互联网、大数据、人工智能和实体经济深度融合,为传统行业与大数据全面融合指明了方向。本次大赛的项目从整体看,比往届赛事项目更为成熟,在数据的挖掘、分析等技术层面更为先进,尤其重视通过数据融合与渗透,在多行业多领域找到痛点解决方案或行业转型升级策略。
以此为视角,从大赛初选中脱颖而出的复赛项目不乏新颖之处。
号称“24h无人便利店”的“X空间”项目以其新颖的商业模式和便捷的购物体验吸引着各界的关注。项目负责人刘霏介绍,除了无人的特点之外,“X空间”作为线下物联网终端,将收集用户基本信息及消费数据,依靠大数据挖掘结果实现精准营销及供应链精细化管理。据了解,该项目已落地北京、长沙、青岛、汕头,并获得了市场的认可。
赛事组委会负责人告诉记者,通过赛事,引导大数据的纵向探索与全面融合,以比拼和选拔的方式,为优秀项目提供展示平台和融资机会,真真切切地为大数据行业发展做实事,是赛事的重要责任和使命。
据悉,本月晚些时候将举行2017中国国际大数据挖掘大赛总决赛及颁奖礼,这也将是“中国数据创新行”活动的收官之战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28