京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据如何再造历史研究
历史学家该如何向公众讲述真理,该怎样说服政府,该以什么样的方式防止以扭曲、片面、狭窄的视角解读历史?
相比经济学,历史学在公众议程、公共政策领域获得的重视要低得多。但反过来,包括经济学在内,各热门学科往往也会以自己的方式切入历史、使用历史,来证明特定的论点。例如经济学家西蒙·库兹涅茨就根据大萧条至20世纪60年代的美国经济数据,分析指出经济的持续发展将使得不平等现象自然消除。生态学家加勒特·哈丁发明出“公地悲剧”的概念,认为地球因面临人口超载,将成为过度放牧的荒野牧场,最终导致巨大的生态和道德悲剧。而近年来,一些经济学家、环境学家强调必须遏制中国、印度等新兴市场国家对于能源的粗放利用,理由是最近二三十年来新兴市场国家更加突出地暴露出严重污染、浪费式消耗能源等问题。
用经过裁剪的历史事实、数据来论证特定论点,这不叫做对于历史的尊重。美国历史学家、布朗大学历史学助理教授乔·古尔迪与英国历史学家、哈佛大学历史学教授大卫·阿米蒂奇合著的《历史学宣言》,对于当下一些学科、公共政策领域采用裁剪历史、短时历史(用区区十几年至几十年的历史)的方式提出强烈质疑,强调应该对应采用长时段历史、更加完整的历史来防止轻率和武断。
作者指出,当环境史学家加入生态、环境问题研究,借助长时段的土地和水资源使用史料数据,可以非常精确地反映历史上各大洲何时何地曾出现恶劣的生态环境,是何原因,又是如何克服的……研究发现,人类社会并非第一次遭遇环境恶化,并因此催生出新的治理形式。而不同大洲许多地方历史上也积累了应对生态和环境问题的有效经验,相比经济学界开出的简单化的方案,对于应对和解决问题具有更强的适用性。同样,要求新兴市场国家为当前世界污染和能源问题承担主要责任,也并不符合长时段的历史事实。
近年来,随着大数据等技术手段投入到历史学研究,更多的历史数据还有助于破除经济学等学科长期以来形成的理论迷信。书中指出,既有的自由市场观念通常强调政府监管、对于利益集团征税会妨碍经济增长。但较长时段所累积的历史数据,给出的判断恰恰相反。
两位作者希望历史学家能够更好地切入公共政策和公共议程,扭转近一个世纪以来包括部分历史学者、其他学科专家采用裁剪历史、短时历史来误导决策者和公众的局面,更为充分地发挥长时段历史研究与阐释的优势。
《历史学宣言》回顾了近现代历史上,历史学界长期形成的长时段历史叙事方式,指出这种导向源自古希腊-古罗马以及其他古代文明的史学传统,带有强烈的关注未来、道德训诫意味,有助于增加现实政策的前瞻性。而20世纪后半期,以霍布斯鲍姆为代表的历史学家,撰写了大量长时段的历史作品,鼓励尊重多元文化、平民生存权利,并强调要警惕还原主义的叙事。长时段历史叙事有助于避免各领域的专家、官员及公众陷入对于某种政策的玫瑰化预期。比如人们通过历史叙事更加明晰工业革命带来的不仅有进步,还有“被侮辱和被损害”的几代劳工,了解到技术和资本对于人的戕害十分显著,使得人们更加注重社会的均衡发展,注重公共福利建设,而不是仅仅满足于技术带来的增长成果。
书中指出,20世纪后半期,随着经济学、社会学等学科在公共政策和公共议程中开始发挥前所未有的影响,史学研究开始“习惯在短期历史的框架下寻找素材”,甚至主动从历史角度寻找素材来解读现实政策(的合理性)。而另一些历史学家热衷研究“微历史”,即细小事件、小人物的历史,不仅以此证明专家“谙熟史料”,而且还能写得很有趣味性,讨好大众读者和市场——这些历史学家对于历史的宏大叙述既无兴趣,而且还竭力否认其价值所在。
21世纪复兴历史学、复兴长时段历史研究和叙事的有利条件在于——大数据的投入使用。“传统的(历史)研究受制于未经数字化处理的文献数量极大,根本没有足够的时间全面梳理”,最后只能变成概要化甚至错误化的研究。而今,“有了便利的工具,并能够借此对大量的量化信息进行比对”,长时段历史叙事的前景空前开阔。无论是全球通史、国家通史,还是专门的气候史、贸易史、农业生产史、食物消费史等,历史学家也好,其他领域的专家,以及公众也好,都会受益于海量数据被重新投入历史研究,更加清晰地揭示更为精确的历史规律。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22