
清华大学牵头成立大数据系统软件国家工程实验室
9月11日,2017国际大数据产业技术创新高峰论坛暨大数据系统软件国家工程实验室第一次会议在清华大学举行。清华大学校长邱勇、副校长杨斌、教育部科学技术司司长雷朝滋、工业和信息化部信息化和软件服务业司副司长安筱鹏、国家发展和改革委员会高技术产业司创新能力处副处长袁军等出席并致辞。活动由清华大学副校长薛其坤主持。
邱勇在会上致辞。石加东 摄
邱勇向国家发展和改革委员会、教育部、工业和信息化部的支持与信任表示感谢。邱勇说,最近国家发改委正式批复成立“大数据系统软件国家工程实验室”,由清华大学为承担单位,北京理工大学为参与单位,联合国防科大、北京大学、人民大学、中山大学、百度、阿里巴巴、腾讯等七家单位,与公安部、环保部、国家气象局、农科院、中石油等单位开展深度合作,体现了高度交叉、高度合作的特点,实验室建设运营意义重大,我们对实验室未来充满期待。
邱勇指出,大数据技术已成为引导社会变革的新兴力量。清华大学在数据科学与工程、大数据应用等方面具备了良好的学科基础,并在大数据软件研发及产业化方面有了长期积累,有些成果已得到应用。例如,清华大学开发的气象大数据平台,已在国家气象中心和21个省级气象中心部署上线,基于相关预报成果,为2016年杭州G20峰会的成功召开提供了重要保障。在环保领域,建设了环保部大数据平台和福建省全国首个省级生态环境大数据平台。在刚刚结束的金砖国家峰会上,首次通过大数据分析,实现了高精度的大气空气质量保障,为后续工程实验室发展奠定了良好基础。
邱勇强调,大数据系统软件是挖掘大数据价值的基础设备,是大数据硬件与应用间的桥梁。清华大学要面向国家大数据产业需求,重点突破大数据系统软件技术瓶颈,支撑创新驱动产业转型升级及关键领域的自主可控,为我国重大战略方向、重点工程的大数据应用提供技术支撑和系统建设。
对于大数据系统软件国家工程实验室的建设,邱勇提出四点要求:一是要打造顶级的大数据系统软件人才团队,突破关键技术;二是要构建共性的技术平台,支撑多个领域的垂直大数据应用体系;三是要打通线上和线下数据链条,开展跨领域合作,形成各类数据连通共享的平台;四是要积极面向产业大数据人才提供服务,建设灵活有效的实验室平台支撑服务体系。
雷朝滋(右)、安筱鹏(左)分别致辞。石加东摄
雷朝滋、安筱鹏先后致辞,充分肯定清华大学、共建合作单位在大数据系统软件和产业化方面的工作成果,表示相关部委机构将一如既往地支持实验室工作,鼓励实验室从技术突破和产业应用等方面为我国大数据事业发展增添动力。
揭牌仪式现场。石加东摄
邱勇、雷朝滋、安筱鹏、国防科技大学计算机学院院长廖湘科院士、北京理工大学副校长陈杰、中国人民大学副校长刘元春、清华大学信息学院院长陆建华院士、大数据系统软件国家工程实验室主任孙家广院士共同为大数据系统软件国家工程实验室揭牌。
随后,孙家广介绍了实验室建设情况。实验室将大力引进国内外高校、研究机构和企业界的大数据高端人才,以大数据全生命周期管理为核心,致力于在大数据存储、处理和计算分析的关键环节实现技术突破,构建大数据系统软件产业的创新网络,促进大数据与各行业应用的深度融合。
孙家广、陈杰、廖湘科、李泽椿(从上至下、从左到右)分别发言。石加东摄
陈杰作为参建单位代表,廖湘科作为实验室共建单位代表,中国气象台原台长李泽椿院士作为合作单位代表分别发言,表示将与清华全力配合、共同协作,发挥好各自单位优势,为实验室建设发展共同努力、共创硕果、共享未来,为我国大数据系统软件自主可控发展作出贡献。
美国科学院、工程院、艺术与科学院院士、清华大学访问教授迈克尔·乔丹做了主题报告。清华大学及国内外大数据领域十余位知名专家学者出席,共同探讨我国大数据系统软件的发展前景。
在同期举办的2017国际大数据产业技术创新高峰论坛上,副校长杨斌介绍了清华大学在大数据领域的工作布局和有效探索。他表示,高峰论坛的召开标志着清华大数据技术研究进入到一个新的阶段,期待与会嘉宾共同绘制大数据产业技术创新的蓝图,共同推动大数据领域的技术与应用创新落地。
杨斌在高峰论坛上做主旨报告。
随后,美国工程院院士、清华大学访问教授希·莫罕,百度公司副总裁王海峰、阿里巴巴集团副总裁刘松、腾讯云公司副总裁黎巍分别围绕“区块链与大数据技术”“百度人工智能”“数据智能生态化实践之路”“社交网络大数据——从建设到赋能”做了主题演讲。数据科学研究院院长俞士纶教授出席并致辞,清华大学软件学院院长、大数据系统软件国家工程实验室执行主任王建民主持论坛。
2017国际大数据产业技术创新高峰论坛现场。石加东摄
本次活动的举行,标志着大数据系统软件国家工程实验室正式启动。各共建单位对实验室发展前景充满信心,一致表示,将与清华大学精诚合作,为推动大数据技术的产学研协同创新机制而努力,为推动我国大数据软件开发应用技术和产业发展提供强有力的支撑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18