
清华大学牵头成立大数据系统软件国家工程实验室
9月11日,2017国际大数据产业技术创新高峰论坛暨大数据系统软件国家工程实验室第一次会议在清华大学举行。清华大学校长邱勇、副校长杨斌、教育部科学技术司司长雷朝滋、工业和信息化部信息化和软件服务业司副司长安筱鹏、国家发展和改革委员会高技术产业司创新能力处副处长袁军等出席并致辞。活动由清华大学副校长薛其坤主持。
邱勇在会上致辞。石加东 摄
邱勇向国家发展和改革委员会、教育部、工业和信息化部的支持与信任表示感谢。邱勇说,最近国家发改委正式批复成立“大数据系统软件国家工程实验室”,由清华大学为承担单位,北京理工大学为参与单位,联合国防科大、北京大学、人民大学、中山大学、百度、阿里巴巴、腾讯等七家单位,与公安部、环保部、国家气象局、农科院、中石油等单位开展深度合作,体现了高度交叉、高度合作的特点,实验室建设运营意义重大,我们对实验室未来充满期待。
邱勇指出,大数据技术已成为引导社会变革的新兴力量。清华大学在数据科学与工程、大数据应用等方面具备了良好的学科基础,并在大数据软件研发及产业化方面有了长期积累,有些成果已得到应用。例如,清华大学开发的气象大数据平台,已在国家气象中心和21个省级气象中心部署上线,基于相关预报成果,为2016年杭州G20峰会的成功召开提供了重要保障。在环保领域,建设了环保部大数据平台和福建省全国首个省级生态环境大数据平台。在刚刚结束的金砖国家峰会上,首次通过大数据分析,实现了高精度的大气空气质量保障,为后续工程实验室发展奠定了良好基础。
邱勇强调,大数据系统软件是挖掘大数据价值的基础设备,是大数据硬件与应用间的桥梁。清华大学要面向国家大数据产业需求,重点突破大数据系统软件技术瓶颈,支撑创新驱动产业转型升级及关键领域的自主可控,为我国重大战略方向、重点工程的大数据应用提供技术支撑和系统建设。
对于大数据系统软件国家工程实验室的建设,邱勇提出四点要求:一是要打造顶级的大数据系统软件人才团队,突破关键技术;二是要构建共性的技术平台,支撑多个领域的垂直大数据应用体系;三是要打通线上和线下数据链条,开展跨领域合作,形成各类数据连通共享的平台;四是要积极面向产业大数据人才提供服务,建设灵活有效的实验室平台支撑服务体系。
雷朝滋(右)、安筱鹏(左)分别致辞。石加东摄
雷朝滋、安筱鹏先后致辞,充分肯定清华大学、共建合作单位在大数据系统软件和产业化方面的工作成果,表示相关部委机构将一如既往地支持实验室工作,鼓励实验室从技术突破和产业应用等方面为我国大数据事业发展增添动力。
揭牌仪式现场。石加东摄
邱勇、雷朝滋、安筱鹏、国防科技大学计算机学院院长廖湘科院士、北京理工大学副校长陈杰、中国人民大学副校长刘元春、清华大学信息学院院长陆建华院士、大数据系统软件国家工程实验室主任孙家广院士共同为大数据系统软件国家工程实验室揭牌。
随后,孙家广介绍了实验室建设情况。实验室将大力引进国内外高校、研究机构和企业界的大数据高端人才,以大数据全生命周期管理为核心,致力于在大数据存储、处理和计算分析的关键环节实现技术突破,构建大数据系统软件产业的创新网络,促进大数据与各行业应用的深度融合。
孙家广、陈杰、廖湘科、李泽椿(从上至下、从左到右)分别发言。石加东摄
陈杰作为参建单位代表,廖湘科作为实验室共建单位代表,中国气象台原台长李泽椿院士作为合作单位代表分别发言,表示将与清华全力配合、共同协作,发挥好各自单位优势,为实验室建设发展共同努力、共创硕果、共享未来,为我国大数据系统软件自主可控发展作出贡献。
美国科学院、工程院、艺术与科学院院士、清华大学访问教授迈克尔·乔丹做了主题报告。清华大学及国内外大数据领域十余位知名专家学者出席,共同探讨我国大数据系统软件的发展前景。
在同期举办的2017国际大数据产业技术创新高峰论坛上,副校长杨斌介绍了清华大学在大数据领域的工作布局和有效探索。他表示,高峰论坛的召开标志着清华大数据技术研究进入到一个新的阶段,期待与会嘉宾共同绘制大数据产业技术创新的蓝图,共同推动大数据领域的技术与应用创新落地。
杨斌在高峰论坛上做主旨报告。
随后,美国工程院院士、清华大学访问教授希·莫罕,百度公司副总裁王海峰、阿里巴巴集团副总裁刘松、腾讯云公司副总裁黎巍分别围绕“区块链与大数据技术”“百度人工智能”“数据智能生态化实践之路”“社交网络大数据——从建设到赋能”做了主题演讲。数据科学研究院院长俞士纶教授出席并致辞,清华大学软件学院院长、大数据系统软件国家工程实验室执行主任王建民主持论坛。
2017国际大数据产业技术创新高峰论坛现场。石加东摄
本次活动的举行,标志着大数据系统软件国家工程实验室正式启动。各共建单位对实验室发展前景充满信心,一致表示,将与清华大学精诚合作,为推动大数据技术的产学研协同创新机制而努力,为推动我国大数据软件开发应用技术和产业发展提供强有力的支撑。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29