京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据+人工智能+生态,招聘进入高维竞争时代
近期,人工智能这个热词不断渗透在各行各业,连不温不火的招聘行业都在喊通过人工智能提高招聘效率,上个月看到猎聘在六周年上推出了两款人工智能产品,也是在6月智联招聘CEO也在讲人工智能。这种新玩法的探索,这个动作也将整个招聘行业的竞争维度拉升到人工智能的高度。
未来阶段,招聘行业竞争的维度总结起来就是三个关键词:大数据、人工智能、生态,大数据是基础,没有大数据就无法做到成规模和体系的高效率招聘;人工智能是建立在大数据的基础上,为的是让企业更有效率的找到所需人才,人才也能高效率的匹配到用人单位;生态其实就是组合拳,在丰富的招聘生态下,每一方参与者都能实现角色的转型和升级。
年初,百度公司CEO李彦宏说,2017年将是移动互联网与人工智能的分水岭,是人工智能元年。事实上,距离1956年,10位科学家在达特茅斯会议上提出这个概念,人工智能已经走过了60年。
招聘业低维度的竞争已经是过去时,未来的竞争时代已经到来,手里有砝码吗?
上述这个问题或许值得所有身在招聘业的玩家深思。招聘作为一个有很长历史的细分领域,即使从网络招聘开始算起也已经很多年了,近年来,随着互联网和移动互联网、深度学习、人工智能等新技术的不断日新月异,招聘行业也迎来了变革的深水期,在新形势下,解构招聘未来密码就得靠硬实力了。
我们来看一组数据。迄今为止,猎聘在猎头端、企业端和经理人端积累的用户数分别超过了25万、50万和3500万,猎聘平台上每天发生的行为数据超过1亿条。这些源源不断的数据沉淀是猎聘布局人工智能战略的核心筹码,也为猎聘的大数据研究以及深度学习提供了可能,这些海量的基础数据是很多招聘平台缺失的。如果说2017年是招聘领域的人工智能元年,那么同时也意味着招聘行业第一阶段的竞争已经结束,如果在第一阶段没有完成用户量、用户行为数据等的积累,就相当于没有拿到第二阶段竞争的入场券。
智联招聘CEO郭盛曾在某大会上也发表了他的对人工智能的看法。他强调人工智能将主要带来对偏理性的、初级和重复性的工作的冲击,对就业市场的长期和整体影响是正面的,但可能产生短期和局部冲击。”同时,他指出“目前我们看到就业形势非常好的行业是交通运输业,但是我们认为这个行业在未来将有非常大的危机,随着算法越来越精确,以及无人机、无人驾驶汽车的出现,需要的司机将会越来越少,因此交通运输业吸纳的就业人口也会变少。另外,就业情况良好的互联网行业,也有一些职业正在慢慢减少。如计算机算法已经代替网络编辑,新闻可以变成自动抓取,自动生成,从智联招聘的数据来看,网络编辑这一职业正在以14%比例下降”。
当猎聘、智联等行业第一阵营的招聘平台都转换赛道,开始血拼人工智能时,没能及时赶上来掉队的招聘网站就会越来越被边缘化,境况越来越被动。
各个行业都是如此,比如资本和创业者杀的火热的共享单车市场,起初在摩拜和ofo小黄车的示范效应下,创业者前赴后继的涌入。在摩拜和ofo占据规模优势下,近期陆续很多共享单车企业传来倒闭消息,市场洗牌在即。
“共享单车这场战争,已经从最初野蛮的铺市场,看谁家投入的车多,进化到用大数据、人工智能思维指导运营,使得单车的运转效率更高的阶段,小玩家已经玩不起了。”类比招聘业,竞争也早已从收发简历向人工智能驱动下的行业新生态转变,用数据分析支撑运营决策,让求职和招聘变得更聪明。在招聘行业的高维竞争时代,人力资源这个产业将加速剧变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27