京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据+人工智能+生态,招聘进入高维竞争时代
近期,人工智能这个热词不断渗透在各行各业,连不温不火的招聘行业都在喊通过人工智能提高招聘效率,上个月看到猎聘在六周年上推出了两款人工智能产品,也是在6月智联招聘CEO也在讲人工智能。这种新玩法的探索,这个动作也将整个招聘行业的竞争维度拉升到人工智能的高度。
未来阶段,招聘行业竞争的维度总结起来就是三个关键词:大数据、人工智能、生态,大数据是基础,没有大数据就无法做到成规模和体系的高效率招聘;人工智能是建立在大数据的基础上,为的是让企业更有效率的找到所需人才,人才也能高效率的匹配到用人单位;生态其实就是组合拳,在丰富的招聘生态下,每一方参与者都能实现角色的转型和升级。
年初,百度公司CEO李彦宏说,2017年将是移动互联网与人工智能的分水岭,是人工智能元年。事实上,距离1956年,10位科学家在达特茅斯会议上提出这个概念,人工智能已经走过了60年。
招聘业低维度的竞争已经是过去时,未来的竞争时代已经到来,手里有砝码吗?
上述这个问题或许值得所有身在招聘业的玩家深思。招聘作为一个有很长历史的细分领域,即使从网络招聘开始算起也已经很多年了,近年来,随着互联网和移动互联网、深度学习、人工智能等新技术的不断日新月异,招聘行业也迎来了变革的深水期,在新形势下,解构招聘未来密码就得靠硬实力了。
我们来看一组数据。迄今为止,猎聘在猎头端、企业端和经理人端积累的用户数分别超过了25万、50万和3500万,猎聘平台上每天发生的行为数据超过1亿条。这些源源不断的数据沉淀是猎聘布局人工智能战略的核心筹码,也为猎聘的大数据研究以及深度学习提供了可能,这些海量的基础数据是很多招聘平台缺失的。如果说2017年是招聘领域的人工智能元年,那么同时也意味着招聘行业第一阶段的竞争已经结束,如果在第一阶段没有完成用户量、用户行为数据等的积累,就相当于没有拿到第二阶段竞争的入场券。
智联招聘CEO郭盛曾在某大会上也发表了他的对人工智能的看法。他强调人工智能将主要带来对偏理性的、初级和重复性的工作的冲击,对就业市场的长期和整体影响是正面的,但可能产生短期和局部冲击。”同时,他指出“目前我们看到就业形势非常好的行业是交通运输业,但是我们认为这个行业在未来将有非常大的危机,随着算法越来越精确,以及无人机、无人驾驶汽车的出现,需要的司机将会越来越少,因此交通运输业吸纳的就业人口也会变少。另外,就业情况良好的互联网行业,也有一些职业正在慢慢减少。如计算机算法已经代替网络编辑,新闻可以变成自动抓取,自动生成,从智联招聘的数据来看,网络编辑这一职业正在以14%比例下降”。
当猎聘、智联等行业第一阵营的招聘平台都转换赛道,开始血拼人工智能时,没能及时赶上来掉队的招聘网站就会越来越被边缘化,境况越来越被动。
各个行业都是如此,比如资本和创业者杀的火热的共享单车市场,起初在摩拜和ofo小黄车的示范效应下,创业者前赴后继的涌入。在摩拜和ofo占据规模优势下,近期陆续很多共享单车企业传来倒闭消息,市场洗牌在即。
“共享单车这场战争,已经从最初野蛮的铺市场,看谁家投入的车多,进化到用大数据、人工智能思维指导运营,使得单车的运转效率更高的阶段,小玩家已经玩不起了。”类比招聘业,竞争也早已从收发简历向人工智能驱动下的行业新生态转变,用数据分析支撑运营决策,让求职和招聘变得更聪明。在招聘行业的高维竞争时代,人力资源这个产业将加速剧变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22