
大数据决定互联网金融未来
互联网金融不是互联网和金融的简单叠加,更深层次的变化是,一些基于互联网应用的特有技术,推动了新的商业模式、产品、服务、功能在金融业内出现,金融体系随之经历着新的变革。大数据就是其中的典型代表,它也被视为推动互联网金融发展的重要驱动力之一。
麦肯锡全球研究院在其发布的《大数据:创新、竞争和生产力的下一个新领域》报告中指出:“大数据之‘大’通常是指数据量大到超过传统数据处理工具的处理能力,是相对和动态的概念。此外,大数据又被引申为解决问题的方法,即通过收集、分析海量数据获得有价值信息,并通过实验、算法和模型,从而发现规律、收集有价值的见解和帮助形成新的商业模式。”
金融业是大数据的重要产生者,交易、报价、业绩报告、消费者研究报告、官方统计数据公报、调查、新闻报道无一不是数据来源。但反过来,大数据对于互联网金融发展的助推作用也逐渐浮现。
目标用户拼精准
大数据对于互联网金融的第一个助推作用在于寻找合适的目标用户,实现精准营销。
互联网金融领域的新创企业或做贷款,或卖产品,凭借高额收益率、手续费优惠,吸引用户选择自己。然而,在越来越多同类企业吹响混战号角的同时,互联网金融企业也不得不面对来自同行业的竞争。盲目扩张,产品单一,使得竞争力不强的互联网金融企业,由于不能保证稳定流量、无法留住客户而倒闭,成为行业的“炮灰”。上海永利宝金融信息服务有限公司CEO余刚分享了一组数据,以互联网金融领域的P2P业务为例,截止到2013年底,中国有450家P2P公司,最短命的P2P企业出现在海南省,创立2天即倒闭。
在巨大市场压力面前,许多互联网金融企业都已意识到自身产品的营销策略很大程度上影响了企业的生存与发展。欲在竞争激烈的市场中占有一席之地,互联网金融企业需要更精准地定位产品,并推送给目标人群。正如德邦证券董事长姚文平在其《互联网金融》一书中指出的:“与其一味地苦思如何‘做得更好’,不如考虑如何‘做得不同’”。
谁是潜在的购买者?如何找到他们?并让他们产生兴趣?
精准营销的实现程度是互联网金融企业存活与崛起的关键所在,这个领域虽然未达到成熟的发展状态,但确实已经有了一些有参考价值的营销案例。例如,梧桐理财网推出了2万起点的“梧桐宝”,是一款8%至10%预期收益的互联网理财产品,其目标客户是能够承担“两万元起投”的中产阶级;速溶网推出的“速溶360”旨在为在校大学生及毕业生提供金融服务;“住金所”的“安心—过桥贷”是针对中小微企业银行贷款周转推出的特色服务产品……
大数据在为这些互联网金融企业找到自己的目标客户,并解决精准营销的问题上发挥了重要作用。大数据通过动态定向技术查看互联网用户近期浏览过的理财网站,搜索过的关键词,通过浏览数据建立用户模型,进行产品实时推荐的优化投放,直击用户所需。
“芝麻信用”控风险
其次,大数据在加强风险可控性,支持精细化管理方面助推了互联网金融,尤其是信贷服务的发展。
通过分析大量的网络交易及行为数据,可对用户进行信用评估,这些信用评估可以帮助互联网金融企业对用户的还款意愿及还款能力做出结论,继而为用户提供快速授信及现金分期服务。
事实上一个人或一个群体的信用好坏取决于诸多变量,如收入、资产、个性、习惯等,且呈动态变化状态。可以说数据在个人信用体系中体现为“芝麻信用”,它便于解决陌生人之间以及商业交易场景中最基本的身份可信性问题,以及帮助互联网金融产品和服务的提供者识别风险与危机。这些数据广泛来源于网上银行、电商网站、社交网络、招聘网、婚介网、公积金社保网站、交通运输网站、搜索引擎,最终聚合形成个人身份认证、工作及教育背景认证、软信息(包括消费习惯、兴趣爱好、影响力、社交网络)等维度的信息。
支付宝的大数据服务部负责人李颖赟以支付宝的用户数据举例,目前支付宝3亿名实名认证用户覆盖了近一半的中国网民,他们的上网足迹提供了涵盖购物、支付、投资、生活、公益等上百种场景数据,每天产生的数据相当于5000个国家图书馆的信息量。当我们在淘宝、天猫等电子商务平台上进行消费时就会留下我们的信用数据,当这些信息积累到一定程度,再结合交易平台上我们的个人信息、口碑评价等进行量化处理后,就能形成用户的行为轨迹,这对还原我们每一个人的信用有相当大的作用。同时,通过交叉检验技术,辅以第三方确认客户信息的真实性,以及开发网络人际爬虫系统,突破地理距离的限制,可以更全面、更客观地得到风险评估结论,从而加强互联网金融服务风险的可审性与管理力度。
毫无疑问,大数据将在互联网金融将大展身手,但大数据只是分析工具,是人类设计的产物,不应过分迷信。以P2P借贷行业为例,目前借贷业务不仅需要网络审核,更需要线下审核,信贷员的从业经验和责任心是信贷安全的重要保障。另外,除了个别企业,大部分互联网金融企业目前的用户规模和交易额都不大,缺乏大数据基础,也无力承担所需的基础设施和处理成本。在互联网金融的发展过程中,如何发挥大数据的优势,避免其劣势,将决定互联网金融的未来。CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08