京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据决定互联网金融未来
互联网金融不是互联网和金融的简单叠加,更深层次的变化是,一些基于互联网应用的特有技术,推动了新的商业模式、产品、服务、功能在金融业内出现,金融体系随之经历着新的变革。大数据就是其中的典型代表,它也被视为推动互联网金融发展的重要驱动力之一。
麦肯锡全球研究院在其发布的《大数据:创新、竞争和生产力的下一个新领域》报告中指出:“大数据之‘大’通常是指数据量大到超过传统数据处理工具的处理能力,是相对和动态的概念。此外,大数据又被引申为解决问题的方法,即通过收集、分析海量数据获得有价值信息,并通过实验、算法和模型,从而发现规律、收集有价值的见解和帮助形成新的商业模式。”
金融业是大数据的重要产生者,交易、报价、业绩报告、消费者研究报告、官方统计数据公报、调查、新闻报道无一不是数据来源。但反过来,大数据对于互联网金融发展的助推作用也逐渐浮现。
目标用户拼精准
大数据对于互联网金融的第一个助推作用在于寻找合适的目标用户,实现精准营销。
互联网金融领域的新创企业或做贷款,或卖产品,凭借高额收益率、手续费优惠,吸引用户选择自己。然而,在越来越多同类企业吹响混战号角的同时,互联网金融企业也不得不面对来自同行业的竞争。盲目扩张,产品单一,使得竞争力不强的互联网金融企业,由于不能保证稳定流量、无法留住客户而倒闭,成为行业的“炮灰”。上海永利宝金融信息服务有限公司CEO余刚分享了一组数据,以互联网金融领域的P2P业务为例,截止到2013年底,中国有450家P2P公司,最短命的P2P企业出现在海南省,创立2天即倒闭。
在巨大市场压力面前,许多互联网金融企业都已意识到自身产品的营销策略很大程度上影响了企业的生存与发展。欲在竞争激烈的市场中占有一席之地,互联网金融企业需要更精准地定位产品,并推送给目标人群。正如德邦证券董事长姚文平在其《互联网金融》一书中指出的:“与其一味地苦思如何‘做得更好’,不如考虑如何‘做得不同’”。
谁是潜在的购买者?如何找到他们?并让他们产生兴趣?
精准营销的实现程度是互联网金融企业存活与崛起的关键所在,这个领域虽然未达到成熟的发展状态,但确实已经有了一些有参考价值的营销案例。例如,梧桐理财网推出了2万起点的“梧桐宝”,是一款8%至10%预期收益的互联网理财产品,其目标客户是能够承担“两万元起投”的中产阶级;速溶网推出的“速溶360”旨在为在校大学生及毕业生提供金融服务;“住金所”的“安心—过桥贷”是针对中小微企业银行贷款周转推出的特色服务产品……
大数据在为这些互联网金融企业找到自己的目标客户,并解决精准营销的问题上发挥了重要作用。大数据通过动态定向技术查看互联网用户近期浏览过的理财网站,搜索过的关键词,通过浏览数据建立用户模型,进行产品实时推荐的优化投放,直击用户所需。
“芝麻信用”控风险
其次,大数据在加强风险可控性,支持精细化管理方面助推了互联网金融,尤其是信贷服务的发展。
通过分析大量的网络交易及行为数据,可对用户进行信用评估,这些信用评估可以帮助互联网金融企业对用户的还款意愿及还款能力做出结论,继而为用户提供快速授信及现金分期服务。
事实上一个人或一个群体的信用好坏取决于诸多变量,如收入、资产、个性、习惯等,且呈动态变化状态。可以说数据在个人信用体系中体现为“芝麻信用”,它便于解决陌生人之间以及商业交易场景中最基本的身份可信性问题,以及帮助互联网金融产品和服务的提供者识别风险与危机。这些数据广泛来源于网上银行、电商网站、社交网络、招聘网、婚介网、公积金社保网站、交通运输网站、搜索引擎,最终聚合形成个人身份认证、工作及教育背景认证、软信息(包括消费习惯、兴趣爱好、影响力、社交网络)等维度的信息。
支付宝的大数据服务部负责人李颖赟以支付宝的用户数据举例,目前支付宝3亿名实名认证用户覆盖了近一半的中国网民,他们的上网足迹提供了涵盖购物、支付、投资、生活、公益等上百种场景数据,每天产生的数据相当于5000个国家图书馆的信息量。当我们在淘宝、天猫等电子商务平台上进行消费时就会留下我们的信用数据,当这些信息积累到一定程度,再结合交易平台上我们的个人信息、口碑评价等进行量化处理后,就能形成用户的行为轨迹,这对还原我们每一个人的信用有相当大的作用。同时,通过交叉检验技术,辅以第三方确认客户信息的真实性,以及开发网络人际爬虫系统,突破地理距离的限制,可以更全面、更客观地得到风险评估结论,从而加强互联网金融服务风险的可审性与管理力度。
毫无疑问,大数据将在互联网金融将大展身手,但大数据只是分析工具,是人类设计的产物,不应过分迷信。以P2P借贷行业为例,目前借贷业务不仅需要网络审核,更需要线下审核,信贷员的从业经验和责任心是信贷安全的重要保障。另外,除了个别企业,大部分互联网金融企业目前的用户规模和交易额都不大,缺乏大数据基础,也无力承担所需的基础设施和处理成本。在互联网金融的发展过程中,如何发挥大数据的优势,避免其劣势,将决定互联网金融的未来。CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08