京公网安备 11010802034615号
经营许可证编号:京B2-20210330
拨开大数据的迷雾
企业的硬性层面(成本、速度、库存周转率、供应链以及资本效率等)是由可以精确量度的事物组成。硬性层面总能与计算机技术、数据和分析完美契合,这并不令人奇怪。据说,最古老的计算工具是用来算账的巴比伦算盘。罗马人的算盘则造得轻巧灵便、易于携带,为他们打造庞大的帝国起到了帮助。
企业硬性层面和数据分析的结合延续至今。企业是数据分析大师,例如上世纪80年代的沃尔玛(Wal-Mart)、90年代的戴尔(Dell)和如今的亚马逊(Amazon)与网飞(Netflix)。同时,我们所说的企业软性层面(比如设计与审美偏好、团队、信任、领导力、聪明才智和故事)始终存在于各自的领域、神秘世界和直觉里。最优秀的践行者被誉为天才而不是分析师,例如审美嗅觉敏锐的史蒂夫·乔布斯(Steve Jobs)、企业领袖导师杰克·韦尔奇(Jack Welch)、把产品当作故事推销的菲尔·耐特(Phil Knight)和创造激情的理查德·布兰森(Richard Branson)。这些软性品质不易量度,也不是易于传授的必要技能。
我有点夸大了企业硬性与软性层面之间的这种明显差异。最优秀的CEO总是能找到方法弥合这种差异。史蒂夫·乔布斯让精通数据分析的蒂姆·库克(Tim Cook)来管理苹果(Apple)业务经营的硬性层面。库克在这方面确实做得很好。迈克尔·埃斯纳(Michael Eisner)拯救了迪士尼(Disney),但他是在杰出的首席运营官弗兰克·威尔斯(Frank Wells)的辅佐下完成的。谷歌曾严重偏向于数据分析,甚至在其主页上测试了41种蓝色阴影以确定观众的反应。如今,谷歌给其平面设计师留有更多的发挥空间,使谷歌产品的观感得到了提升。
隐藏的惊喜
在大数据这个新时代里,问题已经变成:我们是否应该把软性层面交到直觉性很强的天才手中,或者是否应该利用大数据为软性层面增添严密性和逻辑性?这能做到吗?如果想打造一家成功的企业,就应该重视这些问题。
大数据现在无疑是个被过度使用的词语。我喜欢维克托·迈尔-舍恩伯格(Viktor Mayer-Schönberger)和肯尼斯·库克耶(Kenneth Cukier)在其著作《大数据时代:生活、工作与思维的大变革》(Big Data: A Revolution That Will Transform How We Live, Work, and Think)中对这个词语给出的解释。他们写到,大数据没有边际和结构,笼统但具有预测性,无法显示原因,但能显示关联性。
在这些方面,混乱无序的大数据更像是企业的软性层面而非硬性层面。那么,大数据能否帮助我们设计出更加迷人的产品,打造出优秀的团队和强大的文化,创造出令人难忘的品牌,使我们更具适应性?
这是个新的领域。大数据正在飞速演进,尚不清楚它能在哪些方面提供真正的洞察力,或者在哪个方面它只会造成代价高昂的干扰。大数据已经在信用卡检测等领域里取得明显成功,并有望用病人的少少几滴血就诊断出疾病。但对于想要出售产品或激励团队的企业领导者来说,大数据能干什么呢?
为了了解大数据的应用方式,我在这个夏天与多位CEO、设计师、营销人员和团队建设者进行了交谈,以便弄清楚大数据在哪些方面有用。这些人来自于各行各业大大小小的公司企业。
Nest Labs公司创始人兼CEO托尼·菲德尔(Tony Fadell)说出了他的看法。该公司是硅谷的一家智能恒温器制造商,其产品通过学习并掌握用户的供暖和制冷方式来节约费用。菲德尔曾在大师史蒂夫·乔布斯的麾下学习产品设计,十来年前iPod的问世也有他的一份功劳。
“大数据是否对Nest Labs公司设计其恒温器有所帮助?”我问道。
“没有。”菲德尔说,“好产品来源于好创意。你要为你自己设计它们。你要对数据说你需要的大多数功能说不。史蒂夫乔布斯就非常善于说不。但大数据展现了人们如何以你意想不到的方式来使用你的产品。在如何改进产品软件、如何与客户沟通以及如何建立忠诚度等方面,大数据提供了极好的观察点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22