
为什么说大数据和金融科技只是在假秀恩爱
大数据、区块链、人工智能以及信息安全可以说是金融科技领域最热门的四个话题了。如果这些词不出现在金融相关领域的会议里,根本就体现不出这个会议的档次。
有人说银行做电商其实就是个笑话,本身难盈利就算了,用户体验简直就是个渣渣。但银行做电商的目的也很明确,一个是搭建自己与用户“互动”的场景,再一个便是进一步获取和深挖大数据资源。
金融科技公司就更不用说了,各类商品交易数据以及物流信息等都是十分宝贵的财富。
乍一看,大数据和金融科技之间天生就该“在一起”,也不奇怪,很多企业的老总们在各类会议上给自己的公司做广告的时,总要让金融科技和大数据站在一起秀下恩爱。“看,我们利用大数据得出了这些结论,然后利用这些结论干了那些事儿……”
但笔者总觉得,大部分的表现是:恩爱不足,尴尬有余。
虽说大数据如此重要,大家也都这么重视,但笔者不得不吐槽的是,当前的大数据产业并不发达,也不怎么健康,完全粗放式地发展,遍地鸡毛。
畸形发展的大数据做不成好先生
大数据这三个字之所以被重视,是因为大家普遍认为,数据之中有挖不尽的宝藏,数不尽的商机。确实也有企业和个人通过数据分析得到一些正确的结论。
比如,通过数据分析,我们可以发现不同年龄段人群的理财喜好,便于我们向用户推荐相关的理财产品。我们还可以通过用户浏览电商网站的习惯,经过数据分析,自动向用户推荐相关的商品广告。
但是目前所谓的大数据产业链中,畸形发展的业务模式给整个行业带来浓重而不光彩的几笔。
1、数据分析方法不科学
不过也有一些数据分析,因为方法论掌握得不好,得出的结论也就相当地不靠谱。最近,在某个国际型的会上,有个专家和他所谓的专业团队通过近几十年的数据分析得出的结论是,人口生育率低有助于经济的发展。
笔者以为这个结论不靠谱,我们只要稍作质疑就会发现这个结论站不住脚。其实这个数据里可能引出另一种结论,那就是因为经济发展了,人们的生育率才下降了。相反的,就像以前,我们总能看到得是,一些山区的农民,越穷,生的孩子却越多。
相信还有更多数据公司的方法是有问题的,得出的结论经不起推敲和检验。
另外,有一些数据公司在分析新事物时,还拿着老掉牙的数据模型和样本做参考,这本身就是对自己的专业性和对数据接收者而言就是一种误导。
2、数据获取途径不正,数据不干净
笔者曾在某个所谓的专业大数据风控微信群里看到有人提到,“如果可以拿到用户的消费数据就好了。”市面上相当一部分所谓的大数据征信公司的数据都是通过各种途径从黑客手里获取的。
3、数据被不合理甚至非法使用
常见的现象是,电话骚扰,邮箱轰炸,更有甚者将不经脱敏处理的数据随意卖出。
据国内通讯类APP触宝电话发布的最新数据显示,9521电话替代400电话成骚扰主力。仅9521开头的骚扰电话在3月至5月呈疯狂增长之势,由3月份的不足250万个,一路增长到5月份的2000万个,增幅达800%之多。由于95开头电话通常为全网呼叫中心号码,诸如银行、保险等机构都在使用,用户看到此类号码容易产生信任,进而提升接听率。可以想象这个行业到底有多少不堪入目的行为。
4、数据仅被少数机构占有
现在市面上的数据,除了那些黑产数据外,多数情况下,很多数据是掌握在极个别的机构的手里,而且是敏感数据,无法在普通人群中产生更广泛的社会价值。而技术的高级阶段便是,优势资源平民化,大众化。因此我们说现在的大数据产业还仅仅是初级阶段,未来还有很长的路要走。
相信数据行业里的问题远远不止这四点,身上如此多的坏毛病,金融科技如何放心发展呢?若这个行业继续如此,肯定不是金融科技的好先生。
针对以上四个问题,我们至少要有干净的数据、科学的数据分析方法论、安全合规的数据环境、以及更开放的数据共享。
1、干净的数据
大数据产业需要洗一洗。有媒体消息称,最近监管对数据乱象出手,开始清理行动。据称,目前有15家公司被列入调查名单,其中几家估值都超几十亿。
若想让大数据产业健康发展,还需要监管部的正确引导,以及市场的检验和矫正。
2、科学的数据分析方法论
需要更专业,可优化,可变动调节的数据模型。
3、安全合规的数据环境
监管部门及时监控和查处非法的数据抓取、使用的个人和企业,清理市场环境。而数据公司自身接受社会监督和监管部门的监管,并保证数据的安全。
4、数据脱敏,服务更多人群
需要一种更为安全的数据传输方式,让数据健康合规地在普通大众身上发挥价值。
最后,随着物联网、区块链、大数据等的融合进一步加深,届时,大数据行业将会有一个跨越式的发展,而那时的金融科技就不必担心场景的问题了。因为,那个时候,场景随处可见,随处可用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15