
大数据分诊,中国医疗革新的大势所趋
美国行业认为其临床诊断和治疗方案存在“瑕疵”的比例大约在30%~50%。在中国,不同来源的 估计“误诊率”在50%~90%,临床诊治本身的有效性堪虞,其原因大致几种:循证医学没有真正成为医疗行为的基础,实践中充斥大量的主观性强的C类证据; 分诊不严谨,草率进入专科诊治阶段;健康信息与医疗信息隔阂,医疗行为缺乏数据证据; “西医中医化”,医生倾向于满足患者不切实际的期待的行医行为。
中国医疗现状一直存在着三个维度的问题:一、循证医学始终没有真正成为医疗行为的基础,实践中充斥大量的主观性强的C类证据;二、医疗资源分配不合理;三、医疗行为不关注心理健康问题。
从第一个维度来说,循证医学讲究三类证据,A类、B类、C类。A类证据是基于医疗大数据得出的普遍结论;B类证据经由医学专家团评审之后得出的结论;C类证据则是凭借医生个体主观意见得出的结论,其严谨性依次递减。遗憾的是,在现行的医疗服务的过程中,不得不承认C类证据已成为主流。
第二维度的问题在于越来越多的人倾向于去大医院看病,而小型医院则无人问津。而在大医院排队看病的“病人”可以分为三类,一类是处于预防阶段的“患者”,本身并没有看病的紧急需求;一类是慢病患者,这类患者虽然患病,但是并不需要去医院反复检查,只是例行开药,却也占用了相当一部分的医疗资源;最后一类才是真正有看病需求的急性病患者,但他们只能使用三分之一的医疗资源。
第三维度的问题是目前的临床医学大多没有注意到生理疾病与心理疾病之间存在40%的交叠,病症的产生有可能是心理问题和生理问题的交织,从心里角度观察很多问题会观察到心因性疾病的躯体化症状,有很多人反复的看各个科,每一个科都会有处方,都会有治疗,但是最终发现,主要问题其实是心理问题。
这三个问题导致误诊率居高不下,医疗费用过快增长,健康结果低效。在互联网技术的加持作用下,如今这些问题可以一一化解。
首先,通过大量信息的整合,医生在临床实践中可以使用电子化临床对比指南来询证。其次,智能分诊系统可以帮助“患者”进行自诊从而判定自己是否需要去医院接受治疗,减少医疗资源浪费。最后,身心的健康评估可以解决心源性疾病得不到有效诊治的问题。互联网+管理式医疗就能够有效的通过智能分诊,电子医生、身心的健康评估,同行的电子化平议,临床指南的比对等技术方式有效解决管理式医疗的故有问题。
互联网+时代需要双向桥接
管理式医疗(Managed Care)作为健康管理的第一代技术起源于大约70年前的美国, 通过规范医疗行为和打破医疗专业信息不对称的诸多手段,达到合理诊治和控制医疗滥用的目的。管理式医疗的循证医学决策树是基于长期队列以及对照数据中发现 的知识,以前知识的积累需要几十年甚至上百年的时间;管理式医疗对于现实诊治行为的指导和干预最好是前摄性的实时干预,在过去,只能是事后审核或基于PC 的知识辅助。
在移动互联时代,医院数据的分享和即时推送由单向变为双向,过去互联网技术主要用于为医生提供 技术支撑,而现在强调在医生及医学技术人员服务过程中对其行为进行采集、归纳和总结;同时,移动医疗体系可在第三方健康管理知识库的基础上对医疗行为作出及时的判断,并在不同终端上提供诊断决策树支持,这使得诊断的客观性及准确性得到大大提高;甚至运用智能分诊系统,用户可以在决定就诊前,通过在线分诊系 统结合历史数据库,决定就医的“轻、重、缓、急”,乃至分科的判断。在中国,笔者估计仅智能分诊环节就可避免大约1/3的无意义就诊,当然,前提是基于科 学的分诊决策树技术。
严肃医学是目前“互联网+医疗”时代需要的态度,在莫衷一是的产品中具有基于A类大数据的移动医疗产品极度匮乏。有幸的是,我们看到美国梅奥诊所近期在中国发布了一款智能自诊系统。根据梅奥合作方发布的官方信息来看,梅奥智能自诊系统的逻辑计算法采用了网状知识数据构成而非简单的线状数据,也就是“梅奥健康决策树”。究其本质就是源自梅奥150年间累积的基础的A类大数据,并根据数据的不断更迭优化后得出的丰富结论。该系统知识库目前拥有52888条节点判断,过1万条结论明细描述。以此举把循证医学再次推到了公众视线内,而这一次,严肃医学搭载了移动互联网的平台。
大数据分诊的颠覆性创新
在“互联网+时代”似乎所有的产业只要与互联网形相加就会变得神奇起来。然而,在互联网医疗爆发的年代中,我们也看到太多互联网的固化思维和医疗界的筒状视野相貌合神离的案例。
如何打破医疗界的筒状视野和互联网的固化思维,是值得更多资本和互联网 医疗创业者深思的课题。当大家都在研究大数据的同时,我们什么是真正的颠覆式创新?诊断原有体系内的痛点,解决它。好比淘宝发现个人创业难和缺乏交易信用平台;微信发现熟人社交的空白点。那么,对于移动医疗诊断的痛,我大胆断言预诊分诊环节必将成为中国医疗革新的转折点。
试想大数据分诊进入三方市场之后,作为需求方的大众以最便捷的方式享有公平严肃医疗的机会,避免错诊及误诊率,节约了时间和金钱成本;医院、健康管理机构、硬件厂商等供方,则通过更精准的分诊分科,避免有效资源的浪费,优化运用流程并降低成本,减少因错诊及误诊引发的医患矛盾;最终,作为支付方的社保、保险公司等将降低医疗支出、优化险种及降低赔付率等形成三方市场紧密合作的闭环。
在互联网+医疗的发展过程中,我们必须去观察双方载体是否具备行业发展的基础,大数据分诊这种基于A类大数据的应用,打破 了传统医疗垄断的局面,逆转了原有以C类数据为主的中国医疗市场。而移动互联网尊重循证医学的应用,也充分体现其在本质上对医学严肃性有了深入的认知。大 数据分诊,取之于民并造福于民,正如互联网发明的本源就是最终为人类服务,这种保证信息对称和双向传播的方式,不正是回归本源最正确的做法吗?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30