
大数据分诊,中国医疗革新的大势所趋
美国行业认为其临床诊断和治疗方案存在“瑕疵”的比例大约在30%~50%。在中国,不同来源的 估计“误诊率”在50%~90%,临床诊治本身的有效性堪虞,其原因大致几种:循证医学没有真正成为医疗行为的基础,实践中充斥大量的主观性强的C类证据; 分诊不严谨,草率进入专科诊治阶段;健康信息与医疗信息隔阂,医疗行为缺乏数据证据; “西医中医化”,医生倾向于满足患者不切实际的期待的行医行为。
中国医疗现状一直存在着三个维度的问题:一、循证医学始终没有真正成为医疗行为的基础,实践中充斥大量的主观性强的C类证据;二、医疗资源分配不合理;三、医疗行为不关注心理健康问题。
从第一个维度来说,循证医学讲究三类证据,A类、B类、C类。A类证据是基于医疗大数据得出的普遍结论;B类证据经由医学专家团评审之后得出的结论;C类证据则是凭借医生个体主观意见得出的结论,其严谨性依次递减。遗憾的是,在现行的医疗服务的过程中,不得不承认C类证据已成为主流。
第二维度的问题在于越来越多的人倾向于去大医院看病,而小型医院则无人问津。而在大医院排队看病的“病人”可以分为三类,一类是处于预防阶段的“患者”,本身并没有看病的紧急需求;一类是慢病患者,这类患者虽然患病,但是并不需要去医院反复检查,只是例行开药,却也占用了相当一部分的医疗资源;最后一类才是真正有看病需求的急性病患者,但他们只能使用三分之一的医疗资源。
第三维度的问题是目前的临床医学大多没有注意到生理疾病与心理疾病之间存在40%的交叠,病症的产生有可能是心理问题和生理问题的交织,从心里角度观察很多问题会观察到心因性疾病的躯体化症状,有很多人反复的看各个科,每一个科都会有处方,都会有治疗,但是最终发现,主要问题其实是心理问题。
这三个问题导致误诊率居高不下,医疗费用过快增长,健康结果低效。在互联网技术的加持作用下,如今这些问题可以一一化解。
首先,通过大量信息的整合,医生在临床实践中可以使用电子化临床对比指南来询证。其次,智能分诊系统可以帮助“患者”进行自诊从而判定自己是否需要去医院接受治疗,减少医疗资源浪费。最后,身心的健康评估可以解决心源性疾病得不到有效诊治的问题。互联网+管理式医疗就能够有效的通过智能分诊,电子医生、身心的健康评估,同行的电子化平议,临床指南的比对等技术方式有效解决管理式医疗的故有问题。
互联网+时代需要双向桥接
管理式医疗(Managed Care)作为健康管理的第一代技术起源于大约70年前的美国, 通过规范医疗行为和打破医疗专业信息不对称的诸多手段,达到合理诊治和控制医疗滥用的目的。管理式医疗的循证医学决策树是基于长期队列以及对照数据中发现 的知识,以前知识的积累需要几十年甚至上百年的时间;管理式医疗对于现实诊治行为的指导和干预最好是前摄性的实时干预,在过去,只能是事后审核或基于PC 的知识辅助。
在移动互联时代,医院数据的分享和即时推送由单向变为双向,过去互联网技术主要用于为医生提供 技术支撑,而现在强调在医生及医学技术人员服务过程中对其行为进行采集、归纳和总结;同时,移动医疗体系可在第三方健康管理知识库的基础上对医疗行为作出及时的判断,并在不同终端上提供诊断决策树支持,这使得诊断的客观性及准确性得到大大提高;甚至运用智能分诊系统,用户可以在决定就诊前,通过在线分诊系 统结合历史数据库,决定就医的“轻、重、缓、急”,乃至分科的判断。在中国,笔者估计仅智能分诊环节就可避免大约1/3的无意义就诊,当然,前提是基于科 学的分诊决策树技术。
严肃医学是目前“互联网+医疗”时代需要的态度,在莫衷一是的产品中具有基于A类大数据的移动医疗产品极度匮乏。有幸的是,我们看到美国梅奥诊所近期在中国发布了一款智能自诊系统。根据梅奥合作方发布的官方信息来看,梅奥智能自诊系统的逻辑计算法采用了网状知识数据构成而非简单的线状数据,也就是“梅奥健康决策树”。究其本质就是源自梅奥150年间累积的基础的A类大数据,并根据数据的不断更迭优化后得出的丰富结论。该系统知识库目前拥有52888条节点判断,过1万条结论明细描述。以此举把循证医学再次推到了公众视线内,而这一次,严肃医学搭载了移动互联网的平台。
大数据分诊的颠覆性创新
在“互联网+时代”似乎所有的产业只要与互联网形相加就会变得神奇起来。然而,在互联网医疗爆发的年代中,我们也看到太多互联网的固化思维和医疗界的筒状视野相貌合神离的案例。
如何打破医疗界的筒状视野和互联网的固化思维,是值得更多资本和互联网 医疗创业者深思的课题。当大家都在研究大数据的同时,我们什么是真正的颠覆式创新?诊断原有体系内的痛点,解决它。好比淘宝发现个人创业难和缺乏交易信用平台;微信发现熟人社交的空白点。那么,对于移动医疗诊断的痛,我大胆断言预诊分诊环节必将成为中国医疗革新的转折点。
试想大数据分诊进入三方市场之后,作为需求方的大众以最便捷的方式享有公平严肃医疗的机会,避免错诊及误诊率,节约了时间和金钱成本;医院、健康管理机构、硬件厂商等供方,则通过更精准的分诊分科,避免有效资源的浪费,优化运用流程并降低成本,减少因错诊及误诊引发的医患矛盾;最终,作为支付方的社保、保险公司等将降低医疗支出、优化险种及降低赔付率等形成三方市场紧密合作的闭环。
在互联网+医疗的发展过程中,我们必须去观察双方载体是否具备行业发展的基础,大数据分诊这种基于A类大数据的应用,打破 了传统医疗垄断的局面,逆转了原有以C类数据为主的中国医疗市场。而移动互联网尊重循证医学的应用,也充分体现其在本质上对医学严肃性有了深入的认知。大 数据分诊,取之于民并造福于民,正如互联网发明的本源就是最终为人类服务,这种保证信息对称和双向传播的方式,不正是回归本源最正确的做法吗?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25