
大数据分诊,中国医疗革新的大势所趋
美国行业认为其临床诊断和治疗方案存在“瑕疵”的比例大约在30%~50%。在中国,不同来源的 估计“误诊率”在50%~90%,临床诊治本身的有效性堪虞,其原因大致几种:循证医学没有真正成为医疗行为的基础,实践中充斥大量的主观性强的C类证据; 分诊不严谨,草率进入专科诊治阶段;健康信息与医疗信息隔阂,医疗行为缺乏数据证据; “西医中医化”,医生倾向于满足患者不切实际的期待的行医行为。
中国医疗现状一直存在着三个维度的问题:一、循证医学始终没有真正成为医疗行为的基础,实践中充斥大量的主观性强的C类证据;二、医疗资源分配不合理;三、医疗行为不关注心理健康问题。
从第一个维度来说,循证医学讲究三类证据,A类、B类、C类。A类证据是基于医疗大数据得出的普遍结论;B类证据经由医学专家团评审之后得出的结论;C类证据则是凭借医生个体主观意见得出的结论,其严谨性依次递减。遗憾的是,在现行的医疗服务的过程中,不得不承认C类证据已成为主流。
第二维度的问题在于越来越多的人倾向于去大医院看病,而小型医院则无人问津。而在大医院排队看病的“病人”可以分为三类,一类是处于预防阶段的“患者”,本身并没有看病的紧急需求;一类是慢病患者,这类患者虽然患病,但是并不需要去医院反复检查,只是例行开药,却也占用了相当一部分的医疗资源;最后一类才是真正有看病需求的急性病患者,但他们只能使用三分之一的医疗资源。
第三维度的问题是目前的临床医学大多没有注意到生理疾病与心理疾病之间存在40%的交叠,病症的产生有可能是心理问题和生理问题的交织,从心里角度观察很多问题会观察到心因性疾病的躯体化症状,有很多人反复的看各个科,每一个科都会有处方,都会有治疗,但是最终发现,主要问题其实是心理问题。
这三个问题导致误诊率居高不下,医疗费用过快增长,健康结果低效。在互联网技术的加持作用下,如今这些问题可以一一化解。
首先,通过大量信息的整合,医生在临床实践中可以使用电子化临床对比指南来询证。其次,智能分诊系统可以帮助“患者”进行自诊从而判定自己是否需要去医院接受治疗,减少医疗资源浪费。最后,身心的健康评估可以解决心源性疾病得不到有效诊治的问题。互联网+管理式医疗就能够有效的通过智能分诊,电子医生、身心的健康评估,同行的电子化平议,临床指南的比对等技术方式有效解决管理式医疗的故有问题。
互联网+时代需要双向桥接
管理式医疗(Managed Care)作为健康管理的第一代技术起源于大约70年前的美国, 通过规范医疗行为和打破医疗专业信息不对称的诸多手段,达到合理诊治和控制医疗滥用的目的。管理式医疗的循证医学决策树是基于长期队列以及对照数据中发现 的知识,以前知识的积累需要几十年甚至上百年的时间;管理式医疗对于现实诊治行为的指导和干预最好是前摄性的实时干预,在过去,只能是事后审核或基于PC 的知识辅助。
在移动互联时代,医院数据的分享和即时推送由单向变为双向,过去互联网技术主要用于为医生提供 技术支撑,而现在强调在医生及医学技术人员服务过程中对其行为进行采集、归纳和总结;同时,移动医疗体系可在第三方健康管理知识库的基础上对医疗行为作出及时的判断,并在不同终端上提供诊断决策树支持,这使得诊断的客观性及准确性得到大大提高;甚至运用智能分诊系统,用户可以在决定就诊前,通过在线分诊系 统结合历史数据库,决定就医的“轻、重、缓、急”,乃至分科的判断。在中国,笔者估计仅智能分诊环节就可避免大约1/3的无意义就诊,当然,前提是基于科 学的分诊决策树技术。
严肃医学是目前“互联网+医疗”时代需要的态度,在莫衷一是的产品中具有基于A类大数据的移动医疗产品极度匮乏。有幸的是,我们看到美国梅奥诊所近期在中国发布了一款智能自诊系统。根据梅奥合作方发布的官方信息来看,梅奥智能自诊系统的逻辑计算法采用了网状知识数据构成而非简单的线状数据,也就是“梅奥健康决策树”。究其本质就是源自梅奥150年间累积的基础的A类大数据,并根据数据的不断更迭优化后得出的丰富结论。该系统知识库目前拥有52888条节点判断,过1万条结论明细描述。以此举把循证医学再次推到了公众视线内,而这一次,严肃医学搭载了移动互联网的平台。
大数据分诊的颠覆性创新
在“互联网+时代”似乎所有的产业只要与互联网形相加就会变得神奇起来。然而,在互联网医疗爆发的年代中,我们也看到太多互联网的固化思维和医疗界的筒状视野相貌合神离的案例。
如何打破医疗界的筒状视野和互联网的固化思维,是值得更多资本和互联网 医疗创业者深思的课题。当大家都在研究大数据的同时,我们什么是真正的颠覆式创新?诊断原有体系内的痛点,解决它。好比淘宝发现个人创业难和缺乏交易信用平台;微信发现熟人社交的空白点。那么,对于移动医疗诊断的痛,我大胆断言预诊分诊环节必将成为中国医疗革新的转折点。
试想大数据分诊进入三方市场之后,作为需求方的大众以最便捷的方式享有公平严肃医疗的机会,避免错诊及误诊率,节约了时间和金钱成本;医院、健康管理机构、硬件厂商等供方,则通过更精准的分诊分科,避免有效资源的浪费,优化运用流程并降低成本,减少因错诊及误诊引发的医患矛盾;最终,作为支付方的社保、保险公司等将降低医疗支出、优化险种及降低赔付率等形成三方市场紧密合作的闭环。
在互联网+医疗的发展过程中,我们必须去观察双方载体是否具备行业发展的基础,大数据分诊这种基于A类大数据的应用,打破 了传统医疗垄断的局面,逆转了原有以C类数据为主的中国医疗市场。而移动互联网尊重循证医学的应用,也充分体现其在本质上对医学严肃性有了深入的认知。大 数据分诊,取之于民并造福于民,正如互联网发明的本源就是最终为人类服务,这种保证信息对称和双向传播的方式,不正是回归本源最正确的做法吗?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22