京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅析检察工作中的大数据运用
最高人民检察院检察长曹建明在十二届全国人大五次会议第三次全体会议上作最高人民检察院工作报告时提出,2017年,检察机关将强化大数据战略思维,深化“智慧检务”建设,实现四级检察机关司法办案、检务公开等“六大平台”全覆盖。“智慧检务”的全面建设,离不开大数据的运用。对于检察工作与大数据运用的关系,笔者认为可以从以下方面分析。
大数据运用有助于检察工作提升。从检务实践经验来看,大数据的运用,对进一步整合司法资源、规范司法行为、深化检务公开、提升工作效能、服务群众等方面都起到了积极的推动作用,有力地提升了检察工作质量。
大数据运用面临的问题。大数据运用在检务工作中虽然有广阔的应用前景,但就现状而言,检察机关的大数据运用仍有很多问题与不足。
一是数据隔离导致数据聚合度低。数据共享是运用大数据技术的基础和前提。然而,现实中数据隔离无处不在。大量数据以数据孤岛的状态被分割在各部门内部而无法被关联与聚合。目前,政法机关和行政机关的大数据应用平台多为各自建设,除数据隔离的问题外,还有硬件投入较大导致的零星建设和更新缓慢等问题。而数据不能共享导致检察机关司法办案调取涉案数据的手续庞杂、费时费力。
二是数据分析与个人主观能动的关系。大数据时代,检察工作人员办案的每一个步骤都会被大数据记载和上传,而上级机关对下级工作的考核便依据这些数据,这可能导致某些工作人员为应付上级机关的检查,工作只做表面文章,录入相关案件数据的过程中,只录入对其工作有利的数据,而不是与案件相关的所有数据,造成案件录入失实,影响检察机关公信力。
三是数据应用人才匮乏、应用水平较低。大数据既然是一种技术,意味着需要专业知识来掌控,因此,检察机关借助大数据运用进行司法办案、服务群众等工作都需要具有丰富经验的大数据分析人才支撑协助。目前,各级检察机关虽然都在积极培养自己的大数据人才,但仍存在专职人员较少、专业程度较低。
四是检务公开与检务监督管理存在矛盾。大数据时代,随着检务公开的发展,公众更容易获得案件的相关信息,也更容易在网络上就案件发表自己的看法,对检察机关的工作进行监督。一些媒体和网民为追求眼球效应,可能会发布一些不实或夸大事实的言论,甚至不惜为此造谣,严重破坏了检察机关的公信力。此外,当事人个人信息和隐私的保护工作也是检察工作中大数据运用面临的挑战之一。
大数据运用注意风险防控。虽然大数据运用仍面临以上诸多问题,但笔者认为,检察机关可以通过以下措施做到扬长避短,最大程度上发挥大数据运用的功效。
一是整合数据信息,完善数据库。建立独立、全面的数据和信息收集、存储、分析系统,建立精简使用的数据指标,在海量的数据信息里收集少而极具代表性的数据,形成检察机关的数据库资源,为检察机关案件的办理提供借鉴,并通过技术手段使得最高人民检察院对各级检察机关办理的案件中的瑕疵进行提醒和规制,提升检察机关案件办理和执法的综合能力,提升检察官整体办案水平,推进检务工作信息化、智能化。同时,深度融合各类数据平台,特别是注重积极推动政法单位数据平台之间的互联互通,实现信息共享共用,共同形成促进司法公正、提升司法效率的强大合力和良性互动,进一步实现检察机关信息化转型升级。
二是强化专业人才培养。加大数据应用能力培训力度,提升干警大数据应用能力,做到面对大数据应用设备,普通干警人人会用,优秀干警各有所长,最大程度上实现大数据充分运用。同时,整合统计、控申举报、技术等部门职能,形成数据信息采集、储存、分析的系统化管理;强化内设机构设置,设立数据、信息和情报部门;招录专业技术人才充实检察队伍,选派青年干警参加技术培训,加大对复合型检察技术专业人才的培养。
三是切实做好对当事人个人信息和隐私的保护。在大数据应用的背景下,结合国家网络安全法和检察机关办案具体情况,制定检察机关内部使用的《当事人个人信息和隐私保护规定》,采取严格的审批制度和审核制度,对当事人个人信息的采集、录入、存储、删除、销毁等阶段,通过严格的内部规定和程序来约束,防止个人信息的泄露和被侵犯。对于不遵守规定者,加大处罚力度,明确责任追究人和相应的处罚措施。同时,加强对干警培训,强调个人信息保护的重要性和个人隐私泄露的危害,从思想程度上提高干警保护个人信息安全的主观认识程度,重视工作中的每个环节,意识到个人信息和隐私的保护对案件相关人员的重要性。
四是完善电子检务公开。完善检察机关检务公开制度,确立统一的全国检察机关检务公开标准,并保留适当的弹性,允许各地区可根据自身特点和优势进行完善,实现更全面、更深层次的检务公开。完善电子检务公开平台建设,不断加大在门户网站、检察院案件信息公开网、新媒体平台上的检务公开力度,保持案件信息的实时发布与更新,对于民众的质疑及时回应,不给造谣、传谣者留有空间,真正满足社会公众对检务公开的期望,实现检务公开和检务监督的良性互动,维护检察机关公正权威的形象
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21