京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 刑法如何保护公民个人信息
近些年来,在信息化数据化的大背景下,个人信息被非法传播和使用的案件层出不穷。民法、行政法以及刑法等所构建的法律体系对于公民个人信息安全的保护也实为必要。
刑法体系
2009年2月28日,全国人大常委会《刑法修正案(七)》增设了“侵犯公民个人信息罪”,2015年8月29日全国人大常委会《刑法修正案(九)》第十七条修订,将该罪主体由特殊主体修改为一般主体,增设了从重处罚的规定,并将本罪法定最高刑由三年有期徒刑提高到了七年有期徒刑。
为精准打击侵犯公民个人信息犯罪,2017年5月9日,最高人民法院、最高人民检察院联合发布《关于办理侵犯公民个人信息刑事案件适用法律若干问题的解释》(下称《解释》),自2017年6月1日起施行。从企业“合规”的角度而言,如何利用大数据技术采集使用个人信息,甚至在销毁时如何做到彻底的“脱敏”处理,成为了各企业“合规”的重要方面。
三维度剑指合规
首先,明确“公民个人信息”的范围。《解释》对“公民个人信息”的范围予以了明确规定:“指以电子或者其他方式记录的能够单独或者与其他信息结合识别特定自然人身份或者反映特定自然人活动情况的各种信息,包括姓名、身份证件号码、通信通讯联系方式、住址、账号密码、财产状况、行踪轨迹等。”
笔者认为,刑法上“公民个人信息”的界定与其他法律并不冲突,“等”字以兜底的方式明确了全面信息保护的现实需要,同时要符合前述“可识别性”的本质特征。根据《最高人民法院关于审理利用信息网络侵害人身权益民事纠纷案件适用法律若干问题的规定》(2014)、《电信和互联网用户个人信息保护规定》(2013)等相关规定,受法律保护的个人信息包括:其一,自然人姓名、出生日期、身份证件号码、住址、联系方式、账号和密码等能够单独或者与其他信息结合识别用户的信息以及用户使用服务的时间、地点等信息;其二,基因信息、病历资料、健康检查资料、犯罪记录、家庭住址、私人活动等个人隐私和其他个人信息。对于金融消费者来说,根据国家工商行政管理总局的相关规定,消费者的性别、职业、收入和财产状况、健康状况、消费情况等能够单独或者与其他信息结合识别消费者的信息的都属于法律保护范围。
其次,“内鬼”入罪门槛降低。《解释》第五条规定:“将在履行职责或者提供服务过程中获得的公民个人信息出售或者提供给他人,数量或者数额达到司法解释规定的相关标准一半以上的,即可认定为‘情节严重’,构成犯罪。”针对银行、工商、电信以及证券、快递等行业内部人员泄露数据的行为提供了更为容易打击的法律基础。
同时,《解释》还明确了网络服务者应有的信息网络安全管理义务,“网络服务提供者拒不履行法律、行政法规规定的信息网络安全管理义务,经监管部门责令采取改正措施而拒不改正,致使用户的公民个人信息泄露,造成严重后果的,应当依照刑法第二百八十六条之一的规定,以拒不履行信息网络安全管理义务罪定罪处罚。”网络服务者拥有强大的信息综合实力,其具有信息聚合的优势,则应在“技术可能性”即根据特有的网络技术环境以及现有的网络技术,确实可以客观完成的情况下,履行相应的信息网络安全管理义务。
第三,罚金力度加大。《解释》第十二条规定:“对于侵犯公民个人信息犯罪,应当综合考虑犯罪的危害程度、犯罪的违法所得数额以及被告人的前科情况、认罪悔罪态度等,依法判处罚金。罚金数额一般在违法所得的一倍以上五倍以下。”由于侵犯公民个人信息的行为大多主观目的为非法谋取利益,因此,财产刑力度的加大可以有效剥夺其犯罪的经济基础。
值得注意的是,侵犯公民个人信息罪与第二百八十五条“非法获取计算机信息系统数据罪”存在想象竞合,从一重罪处罚的情况。根据《关于办理危害计算机信息系统安全刑事案件应用法律若干问题的解释》的规定:“(一)非法获取支付结算、证券交易、期货交易等网络金融服务的身份认证信息10组以上的;(二)获取第(一)项以外的身份认证信息500组以上的”认定为“情节严重”情形。因此,在金融服务领域,如何区分身份认证信息与公民个人信息,如何界定行为人客观行为是否构成相应法益的侵害,如何判断行为人的主观目的都将成为界定此罪与彼罪的关键。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27