
进入大数据行业的公司必须了解这六个问题
之前参加了IC咖啡举办的Italk活动,听取的有关大数据公司和产业机构的讲座,因此萌生出一个写文章的冲动,想对目前大数据产业中的一些错误现象进行讨论.
陈宇认为大数据是哲学层面上的问题,属于统计学范畴,部分揭示了大数据产业的本质,但是实际上大数据这个概念自身就有着不同的诠释。利用数据进行军事分析,产品定位,交通管理,风险管理,精准营销等等,其实在几十年前就有了。最早的保险产品就是来源于偶然事件的概率分析,其参考历史数据分析,依据计算出的概率来,来对保险产品进行定价。中国古代的军事学家孙膑在战争中,通过逐步减少行军灶坑来迷惑对手,利用其师弟庞涓对数据信任,制造其带领军队溃败的假象,最后在对方轻敌冒进的前提下,突袭了对手,赢得了战争胜利。因此数据分析其实在很久远的古代就存在了。为什么过去的数据分析换成了时髦的名称大数据了呢?
相对于过去的数据,我们来讨论大数据的含义:
1)过于一些记录是以模拟形式出现的,或者以数据形式出现但是存贮在本地,不是公开数据资源,没有开放给互联网用户,例如音乐、照片、视频、监控录像等影音资料。现在这些数据不但数据量巨大,并且放到了互联网上,开放给整个互联网用户,其数量之大是前所未有了。举个例子Facebook每天有18亿张照片上传或被传播,形成了海量的开放数据。
2)移动互联网出现后,移动设备的很多传感器收集了大量的用户点击行为数据,已知iphone有3个传感器,三星有6个传感器。它们每天产生了大量的点击数据,这些数据被某些公司所有拥有,形成用户大量行为数据。
3)移动地图出现后,例如高德、百度、google地图,其产生了大量的数据流数据,这些数据不同于传统数据,传统数据代表一个属性或一个度量值,但是这些地图产生的流数据代表着一种行为、一种习惯,这些流数据经频率分析后会产生巨大的商业价值。基于地图产生的数据流是一种新型的数据类型,在过去是不存在的。
4)进入了社交网络的年代后,互联网行为主要由用户参与创造,因此有大量的互联网用户创造出大量的社交行为数据。这些数据是过去不曾想像的,是海量的。某些数据代表特定人群的特点和个性。
5)电子商户崛起带来了大量网上交易行为,其产生了大量的交易数据,包含支付行为,查询行为,物流运输、购买行为等等,产生了海量的信息流和资金流数据。
6)传统的互联网入口转向搜索引擎之后,用户的搜索行为和提问行为产生了海量数据。单位存贮价格的下降也为存储这些数据提供了技术上的可能。
现在我们所指的大数据不同与过去传统的数据,其产生方式、存储载体、访问方式、表现形式、来源特点等都同传统的数据不同。简单的讲大数据范围更接近于某个群体行为特点数据,全面的数据。移动互联网和社交网络创造出来了大量的行为数据。
大数据产业是朝阳产业,任何一个想进入此产业的公司和个人向先要思考好以下几个问题。
1数据在哪里?
2哪些是有用的数据?
3如何分析这些数据?(如何将非结构化数据变成结构化数据)
4需要用数据解决的问题是什么?或者是分析后数据后提出的观点是什么?
5如何展现你的数据和推理?(图形、图表、曲线、分值、评价、归类、等级、概率、模型等等,大数据要么解决目前的问题,要么支持你的假设,要们引导出另一个未知观点)
6重新审核数据分析的逻辑和数据来源,是否可以展现一份可以经过推敲的数据分析报告?
如果以上的问题都可以解决,这时你可以进入正产业。中国的大数据产业近几年来逐渐升温,政府有投入了大量的资金。目前正在困扰很多大数据公司的问题是数据在哪里?目前我们了解的大数据来源主要有以下几个方面;
1)电信运行商(由于其提供互联网接入服务,互联网行为记录数据)
2)第三方支付(支付行为产生的资金流和信息流数据)
3)电商平台(阿里为代表,几亿的淘宝用户和2万亿的网络购买行为的数据)
4)社交平台(微信和微博为代表的社区网络产生的互联网行为数据)
5)电子游戏平台(大量用户产生的数据)
6)移动入口产生大量数据(包含移动APP,导航,地图等)
7)搜索引擎上产生的数据
除了这些新兴的大数据来源,其实在传统行业,由于很多数据是不能公开和共享的,还有很多大数据来源没有被重点关注。例如:
1)政府掌握的经济社会的统计数据
2)金融行业内部交易和支付数据
3)医疗行业的病历数据
4)教育行业的考试数据
5)交通运输行业物流数据
6)科学研究方面大量重复的论文、专利、科研实验的数据
7)生物工程、农林牧渔等方面的数据
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18