京公网安备 11010802034615号
经营许可证编号:京B2-20210330
进入大数据行业的公司必须了解这六个问题
之前参加了IC咖啡举办的Italk活动,听取的有关大数据公司和产业机构的讲座,因此萌生出一个写文章的冲动,想对目前大数据产业中的一些错误现象进行讨论.
陈宇认为大数据是哲学层面上的问题,属于统计学范畴,部分揭示了大数据产业的本质,但是实际上大数据这个概念自身就有着不同的诠释。利用数据进行军事分析,产品定位,交通管理,风险管理,精准营销等等,其实在几十年前就有了。最早的保险产品就是来源于偶然事件的概率分析,其参考历史数据分析,依据计算出的概率来,来对保险产品进行定价。中国古代的军事学家孙膑在战争中,通过逐步减少行军灶坑来迷惑对手,利用其师弟庞涓对数据信任,制造其带领军队溃败的假象,最后在对方轻敌冒进的前提下,突袭了对手,赢得了战争胜利。因此数据分析其实在很久远的古代就存在了。为什么过去的数据分析换成了时髦的名称大数据了呢?
相对于过去的数据,我们来讨论大数据的含义:
1)过于一些记录是以模拟形式出现的,或者以数据形式出现但是存贮在本地,不是公开数据资源,没有开放给互联网用户,例如音乐、照片、视频、监控录像等影音资料。现在这些数据不但数据量巨大,并且放到了互联网上,开放给整个互联网用户,其数量之大是前所未有了。举个例子Facebook每天有18亿张照片上传或被传播,形成了海量的开放数据。
2)移动互联网出现后,移动设备的很多传感器收集了大量的用户点击行为数据,已知iphone有3个传感器,三星有6个传感器。它们每天产生了大量的点击数据,这些数据被某些公司所有拥有,形成用户大量行为数据。
3)移动地图出现后,例如高德、百度、google地图,其产生了大量的数据流数据,这些数据不同于传统数据,传统数据代表一个属性或一个度量值,但是这些地图产生的流数据代表着一种行为、一种习惯,这些流数据经频率分析后会产生巨大的商业价值。基于地图产生的数据流是一种新型的数据类型,在过去是不存在的。
4)进入了社交网络的年代后,互联网行为主要由用户参与创造,因此有大量的互联网用户创造出大量的社交行为数据。这些数据是过去不曾想像的,是海量的。某些数据代表特定人群的特点和个性。
5)电子商户崛起带来了大量网上交易行为,其产生了大量的交易数据,包含支付行为,查询行为,物流运输、购买行为等等,产生了海量的信息流和资金流数据。
6)传统的互联网入口转向搜索引擎之后,用户的搜索行为和提问行为产生了海量数据。单位存贮价格的下降也为存储这些数据提供了技术上的可能。
现在我们所指的大数据不同与过去传统的数据,其产生方式、存储载体、访问方式、表现形式、来源特点等都同传统的数据不同。简单的讲大数据范围更接近于某个群体行为特点数据,全面的数据。移动互联网和社交网络创造出来了大量的行为数据。
大数据产业是朝阳产业,任何一个想进入此产业的公司和个人向先要思考好以下几个问题。
1数据在哪里?
2哪些是有用的数据?
3如何分析这些数据?(如何将非结构化数据变成结构化数据)
4需要用数据解决的问题是什么?或者是分析后数据后提出的观点是什么?
5如何展现你的数据和推理?(图形、图表、曲线、分值、评价、归类、等级、概率、模型等等,大数据要么解决目前的问题,要么支持你的假设,要们引导出另一个未知观点)
6重新审核数据分析的逻辑和数据来源,是否可以展现一份可以经过推敲的数据分析报告?
如果以上的问题都可以解决,这时你可以进入正产业。中国的大数据产业近几年来逐渐升温,政府有投入了大量的资金。目前正在困扰很多大数据公司的问题是数据在哪里?目前我们了解的大数据来源主要有以下几个方面;
1)电信运行商(由于其提供互联网接入服务,互联网行为记录数据)
2)第三方支付(支付行为产生的资金流和信息流数据)
3)电商平台(阿里为代表,几亿的淘宝用户和2万亿的网络购买行为的数据)
4)社交平台(微信和微博为代表的社区网络产生的互联网行为数据)
5)电子游戏平台(大量用户产生的数据)
6)移动入口产生大量数据(包含移动APP,导航,地图等)
7)搜索引擎上产生的数据
除了这些新兴的大数据来源,其实在传统行业,由于很多数据是不能公开和共享的,还有很多大数据来源没有被重点关注。例如:
1)政府掌握的经济社会的统计数据
2)金融行业内部交易和支付数据
3)医疗行业的病历数据
4)教育行业的考试数据
5)交通运输行业物流数据
6)科学研究方面大量重复的论文、专利、科研实验的数据
7)生物工程、农林牧渔等方面的数据
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15