
清华大学用大数据分析了9000条微博谣言,还在研究自动辟谣
社交媒体上的谣言总是让人猝不及防,有些甚至能在短时间造成不小的危害。比如,几天前,微信怎么也不会想到,因为一个年终回顾的HTML5页面被提前泄露,带来大量用户点击导致服务器瘫痪,然后引发了盗号的谣言。最后的结果是,短短的几个小时内,数百万人从微信提现,解绑银行卡。
社交媒体上都流传着哪些谣言?这些谣言都是谁发布的?为什么会有人相信并主动参与传播这些谣言?社交网络上的信息是海量的,这些问题似乎很难回答。不过最近,清华大学智能技术与系统国家重点实验室的研究人员借用了自然语言处理的帮助,对新浪微博上的谣言大数据进行了全面的分析,试图找出答案。
2012年5月,新浪微博设立了举报处理大厅,谣言占了不良信息中的一大部分。研究人员利用微博举报大厅公布的实时数据收集谣言信息。
他们收集了从2011年8月到2015年5月期间出现的9079条谣言,用函数模型对这些数据进行了预处理,发现了一些有趣的现象。
大部分微博谣言会在其发布的一个周内被举报并辟谣
第一,大多数微博谣言的影响力都比较小, 转发和评论数在500次以下的微博占到整体的84%。只有极少量的微博谣言具有极广的传播范围和强大的影响力 。
第二,谣言通常要传播一段时间后,才有可能遭到举报;同时, 由于传播速度快,大部分微博谣言会在其发布的一个周内被举报并辟谣 (88.9%)。
第三,大量举报谣言的用户, 所举报的谣言往往与自己相关. 例如, 微博用户 “美汁源饮料” 举报了 大量关于 “美汁源果粒橙” 饮料含有农药的谣言, 张家界纪委书记汪业元举报了大量关于 “汪业元发表 ‘对网络暴民杀无赦’ 的言论” 的谣言。
第四,大量发布谣言的用户,往往带有网络水军的性质,例如,有微博用户仅在几分钟的时间里发布了几十条微博, 其中大部分是谣言, 之后该用户就再未发过微博。
常识类谣言经常反复出现转发高峰
研究人员还根据谣言内容将其分成了5个分类:政治类谣言,例如钓鱼岛海域中日两国爆发海战;
经济类谣言,例如三星赔偿苹果几十车硬币;
欺诈类谣言,例如“四川藏区儿童需要御寒冬衣”,然后留下了一个虚假的联系电话;
社会生活类谣言,社会各界人物的花边新闻,例如六小龄童去世;
常识类谣言,例如阿司匹林能治疗心脏病。
这些谣言中,大部分属于社会生活类和政治类谣言 (约占70%)。而结合微博谣言发布、传播、高峰和消亡的过程还可以发现,不同的谣言出线转发峰值的情况也各部相同。
70%的谣言话题只有一个较大转发峰值,也就是说,被辟谣后,它们就会逐渐消亡。
另外,谣言的内容也和其转发峰值有关系:例如,常识类谣言由于受众广,辟谣难度较大,往往会反复被人们提及,出现多次爆发,约70%的常识类谣言通常有多个转发峰值。而关于名人或知名机构的谣言,由于关注人数众多,辟谣难度较小,因此发布之初就会出现较大转发峰值,但很快会被辟谣,约60%的此类谣言会在一个周内消亡。
人们为什么相信谣言
人们为什么会相信这些谣言呢?研究人员分析后将原因归结为两类:(1)知识受限,即缺乏专业知识而导致误信或无法辨认的谣言。例如,阿司匹林可以治疗急性心脏病;(2)时空受限谣言,即由于地域和时间限制无法辨认的谣言。例如, 有谣言称“杭州上城区一妇女喝了3罐可乐,两天后离开了这个世界。验尸结果是她死于细螺旋体病, 发病原因是直接用嘴对可乐罐饮用”。
自动辟谣框架
在对谣言进行分析之后,研究人员还试图建立一个自动辟谣机制。当然,在目前的技术条件下,自然语言处理技术还无法根据微博内容自动判断其是否为谣言。所以,研究人员的思路通过语义分析,自动根据谣言主题对其进行分类,然后发现最有可能判定该谣言的专家,推荐专家对疑似谣言进行鉴别。
研究人员的框架主要包括3个阶段的工作:
1. 谣言发布早期,通过用户举报和对可疑用户的监控建立疑似谣言的集合。一方面,将疑似谣言和谣言库中进行比对;另一方面, 对于在谣言库中没有匹配内容的谣言,通过查询该领域的专家库,推荐若干专家对该疑似谣言进行鉴别。
2. 谣言发布中期,通过自然语言处理技术分析疑似谣言的评论信息,通过社会网络分析技术分析疑似谣言的传播模式,判定该信息是否为谣言。
3. 谣言发布后期,对于判定为谣言的信息, 将其加入谣言库;对信息发布人进行可信性分析,确定其信用等级,将信用等级低于一定阈值的用户加入可疑用户库,在一段时间内对其发布的微博内容进行监控;对信息举报人和评论人进行专家发现,充实和更新该信息相关的知识领域的专家库。
当然,目前这一切还处于理论研究阶段,而建立可以用户库也需要以网站更严格地执行实名制为前提。用大数据、人工智能去对付谣言,前提是需要很多人交出更多的隐私,你愿意吗?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15