京公网安备 11010802034615号
经营许可证编号:京B2-20210330
清华大学用大数据分析了9000条微博谣言,还在研究自动辟谣
社交媒体上的谣言总是让人猝不及防,有些甚至能在短时间造成不小的危害。比如,几天前,微信怎么也不会想到,因为一个年终回顾的HTML5页面被提前泄露,带来大量用户点击导致服务器瘫痪,然后引发了盗号的谣言。最后的结果是,短短的几个小时内,数百万人从微信提现,解绑银行卡。
社交媒体上都流传着哪些谣言?这些谣言都是谁发布的?为什么会有人相信并主动参与传播这些谣言?社交网络上的信息是海量的,这些问题似乎很难回答。不过最近,清华大学智能技术与系统国家重点实验室的研究人员借用了自然语言处理的帮助,对新浪微博上的谣言大数据进行了全面的分析,试图找出答案。
2012年5月,新浪微博设立了举报处理大厅,谣言占了不良信息中的一大部分。研究人员利用微博举报大厅公布的实时数据收集谣言信息。
他们收集了从2011年8月到2015年5月期间出现的9079条谣言,用函数模型对这些数据进行了预处理,发现了一些有趣的现象。
大部分微博谣言会在其发布的一个周内被举报并辟谣
第一,大多数微博谣言的影响力都比较小, 转发和评论数在500次以下的微博占到整体的84%。只有极少量的微博谣言具有极广的传播范围和强大的影响力 。
第二,谣言通常要传播一段时间后,才有可能遭到举报;同时, 由于传播速度快,大部分微博谣言会在其发布的一个周内被举报并辟谣 (88.9%)。
第三,大量举报谣言的用户, 所举报的谣言往往与自己相关. 例如, 微博用户 “美汁源饮料” 举报了 大量关于 “美汁源果粒橙” 饮料含有农药的谣言, 张家界纪委书记汪业元举报了大量关于 “汪业元发表 ‘对网络暴民杀无赦’ 的言论” 的谣言。
第四,大量发布谣言的用户,往往带有网络水军的性质,例如,有微博用户仅在几分钟的时间里发布了几十条微博, 其中大部分是谣言, 之后该用户就再未发过微博。
常识类谣言经常反复出现转发高峰
研究人员还根据谣言内容将其分成了5个分类:政治类谣言,例如钓鱼岛海域中日两国爆发海战;
经济类谣言,例如三星赔偿苹果几十车硬币;
欺诈类谣言,例如“四川藏区儿童需要御寒冬衣”,然后留下了一个虚假的联系电话;
社会生活类谣言,社会各界人物的花边新闻,例如六小龄童去世;
常识类谣言,例如阿司匹林能治疗心脏病。
这些谣言中,大部分属于社会生活类和政治类谣言 (约占70%)。而结合微博谣言发布、传播、高峰和消亡的过程还可以发现,不同的谣言出线转发峰值的情况也各部相同。
70%的谣言话题只有一个较大转发峰值,也就是说,被辟谣后,它们就会逐渐消亡。
另外,谣言的内容也和其转发峰值有关系:例如,常识类谣言由于受众广,辟谣难度较大,往往会反复被人们提及,出现多次爆发,约70%的常识类谣言通常有多个转发峰值。而关于名人或知名机构的谣言,由于关注人数众多,辟谣难度较小,因此发布之初就会出现较大转发峰值,但很快会被辟谣,约60%的此类谣言会在一个周内消亡。
人们为什么相信谣言
人们为什么会相信这些谣言呢?研究人员分析后将原因归结为两类:(1)知识受限,即缺乏专业知识而导致误信或无法辨认的谣言。例如,阿司匹林可以治疗急性心脏病;(2)时空受限谣言,即由于地域和时间限制无法辨认的谣言。例如, 有谣言称“杭州上城区一妇女喝了3罐可乐,两天后离开了这个世界。验尸结果是她死于细螺旋体病, 发病原因是直接用嘴对可乐罐饮用”。
自动辟谣框架
在对谣言进行分析之后,研究人员还试图建立一个自动辟谣机制。当然,在目前的技术条件下,自然语言处理技术还无法根据微博内容自动判断其是否为谣言。所以,研究人员的思路通过语义分析,自动根据谣言主题对其进行分类,然后发现最有可能判定该谣言的专家,推荐专家对疑似谣言进行鉴别。
研究人员的框架主要包括3个阶段的工作:
1. 谣言发布早期,通过用户举报和对可疑用户的监控建立疑似谣言的集合。一方面,将疑似谣言和谣言库中进行比对;另一方面, 对于在谣言库中没有匹配内容的谣言,通过查询该领域的专家库,推荐若干专家对该疑似谣言进行鉴别。
2. 谣言发布中期,通过自然语言处理技术分析疑似谣言的评论信息,通过社会网络分析技术分析疑似谣言的传播模式,判定该信息是否为谣言。
3. 谣言发布后期,对于判定为谣言的信息, 将其加入谣言库;对信息发布人进行可信性分析,确定其信用等级,将信用等级低于一定阈值的用户加入可疑用户库,在一段时间内对其发布的微博内容进行监控;对信息举报人和评论人进行专家发现,充实和更新该信息相关的知识领域的专家库。
当然,目前这一切还处于理论研究阶段,而建立可以用户库也需要以网站更严格地执行实名制为前提。用大数据、人工智能去对付谣言,前提是需要很多人交出更多的隐私,你愿意吗?
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13