京公网安备 11010802034615号
经营许可证编号:京B2-20210330
衡量营销影响的5项重要指标
如今,提到市场营销几乎不可避免要谈到数据。在中国这个体量巨大的市场,有关市场、客户、销售和服务的信息浩如烟海,使得营销人员接触的各类数据更多。如果不能加以利用,那拥有再多的数据也是毫无意义。而且,数据不仅用于传达营销举措和结果,还用于精细调整营销方案……成功利用数据的关键在于跳出标准框架的限制。
很多营销工具只是使用相同的预定指标制定一个框架,或者需要开发人员才可进行自定义。但是,模板框架只能显示正在发生的状况,而不容许你提出下一个问题、探寻原因和进行发掘。为清晰说明一项市场营销方案的实际影响,你需要提出创造性的问题并能够在你的数据中追求新的理论,因为业务是不断变化的。
考虑到这一点,以下是能够衡量营销影响的五种方法——以及可同时使用的一些专业技巧。
1. 测量内容之间的相互作用,以精细调整商机评估模型:
人人都谈内容,因为好的内容策略能将营销方案提升到新的高度。但是,重要的是超出计算页面视图和网络流量的范围限制,将下载、互动时间、搜索量、社会共享、转化率等相互作用的指标纳入囊中,并在预期不偏离销售漏斗的情况下审视指标。你可以使用相互作用的内容为基础来制定和微调商机评估模型。关键是避免在一个模型内跟踪所有营销内容。数据驱动成功的关键在于各部门与平台之间的数据共享,以理解整个生态系统。
2. 通过融合数据理解社交媒体的最佳用途:
多年以来,社交媒体已成为纯粹的狂欢会。过去在社交媒体上我们只是宣布我们有一批追随者而已,但那种日子已经一去不复返了。尤其在中国,微信与微博是最常用的两大社交应用和信息获取平台。越来越多的企业想运用这两大新媒体平台巨大的用户基数和流量来进行营销推广活动。面对点阅量、转发量、粉丝量等复杂的数据统计,尤其有必要进行数据融合和汇总。例如,如果你使用社交媒体作为一种客户服务工具,你需要观察响应率和问题解决率,可能还需要将它与客户满意度挂钩。但是,即使和其它应用工具一起使用时,观察和理解社交媒体影响力的唯一方式仍是将其与目标置于同一背景之下……就是说将社交影响的数据拿出标准框架并与外部资源融合。
3. 观察活动的整体参与度:
矛盾的是,活动在数字时代继续为客户提供独特的体验,并构成营销组合的一部分,但是量化活动的影响力通常比较困难。要想获得尽可能多的信息,应考虑活动的整体参与度,衡量社交活动、现场预约、展位光顾量、代表的交谈次数、捕捉的商机等等。然后,再看这些数字与网络流量和销售量等指标之间的关系,即拥有在一处显示多种数据资源的能力。
4. 了解商机的业务转化率:
商机生成率是衡量最多的营销指标。当商机发生变化时,大家都想了解其中的原因。你应确保考虑到从点击率到转化率、人均客户成本、商机质量和内容之间的相互作用——以及这些指标之间的关系。此外,你还应当清楚如何在你的销售渠道或销售力量中分配这些商机。对一些大公司来说,这可能意味着成千上万位销售人员,因此使用可显示整体情况和分配详情的图解非常重要。通常情况下,商机变化的原因只能在底层数据中发现,而非数据概览。
5. 以小见大——显示整个漏斗:
如上所述,衡量影响的唯一关键可能就是将其置于背景之中考虑。能够纵观整个营销漏斗是成为一位真正的数据驱动型营销人员的唯一途径,因为透过它可以看到某项活动对下游环节……乃至底线的影响。这一点必须通过互动的方式进行,从而让所有人都能驱动和追求他们自己的原因理论。
综上所述,不要局限于将所有不同数据置于同一个框架之中,或者仅在营销漏斗停止时停止。做到真正的数据驱动意味着再前进几步,并且通常是在动态中进行的。
所有这些可能会让人不知所措,但请不要气馁。如果上述任一指标在目前尚未被衡量或关联,你最好马上开始。举例来说,当你需要快速的做活动分析来分析数据库中关于不同地域、来源、行业和其它分类的数据的时候。有了Tableau交互数据可视化功能,你能搜索数据从而理解数据趋势走向并设计新的活动,监测你活动中的成功之处,并通过分析衡量标准使你的营销数据最大化的得到利用。通过市场、活动、目标客户群的人口统计来将收益分类,可以极大地优化你的活动组织和市场分割。使用地域筛选,可逐月细分你的收入,理清在这些地区哪些产品更受欢迎。
慢慢地,你在收集、跟踪、融合和匹配不同指标以理解营销影响的方面就会做得更好。有一点需要明确:这个使用不同数据设计灵活和切实有用的新框架是一个互动的过程。在这个过程中,你作为一位现代营销人员应当不断前进,无论你的起点如何。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27