京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据风控助力徽常有财发展
12月13日,杭州邦盛金融信息技术有限公司与徽商银行直销银行“徽常有财”在合肥举行签约仪式。这意味着“徽常有财”将正式启用邦盛金融的授信决策产品,以减少银行互联网信贷业务面临的欺诈风险,同时利用大数据技术提高互联网信贷业务的效率。
直销银行兴起于上世纪90年代末,是传统银行在互联网时代布局的一种新型银行运作模式。它打破了时空的限制,极大地拓展了传统银行的生存空间。但与此同时,直销银行所面临的风险也不可小觑,除了传统金融的业务风险外,还有互联网金融的技术类风险。比如银行线上授信类业务即可能面临多重欺诈风险,这其中包括逾期信用风险、本人伪造欺诈风险、他人伪造欺诈风险以及团队/中介欺诈风险等等。如何快速识别欺诈风险,同时利用技术手段提高整体运营效率,这将是传统银行在互联网金融浪潮中继续保持竞争力所面临的重大挑战之一。
而这正是邦盛金融成立后用整整四年时间来研究的一件事。传统的授信业务是线下进行的,申请授信的人与银行的人要面对面,提交银行要求的各种材料,银行要对材料的真伪进行核实,包括现场核实。互联网授信业务是在线上进行的,申请授信的人与银行的人不是面对面的,因此互联网授信业务极大提升效率的同时,也带来了巨大风险。邦盛金融的互联网授信决策产品应运而生。简单来说,就是在用户申请的环节,识别欺诈的风险;在授信的环节,通过海量数据,包括人行征信数据,电商数据,运营商数据,社保缴费数据,等等十几个维度的数据优化成的模型做评分,从而决定授信额度,而这一切都是秒级完成,通过分析海量数据实现的。“我们所做的,就是不断通过大数据技术的处理能力,综合各方面的数据提高银行互联网授信业务的的整体效率与最终客户体验。”邦盛金融副总经理王昊一如此表述。
不同于目前市场上其他的金融风控产品方案,邦盛金融的授信决策产品具有全业务场景支持调用、全生命周期风险管理、全自动化审批决策、全授权数据采集以及全数据清洗加工等五大特点,所有方案都是基于客户定制开发的本地化规则模型,全方位、多角度地为其提供超一流的技术体验。
徽商银行电子银行部总经理助理王涛表示,“邦盛金融在互联网反欺诈、实时风控、大数据应用以及底层技术实现等方面具有丰富的实施经验,因此,“徽常有财”选择与邦盛金融一起,携手拓展互联网消费信贷业务。”
成立于2010年,邦盛金融是国内最早从事事中反欺诈技术研究与应用的企业,同时也是目前少数拥有自主产权底层平台的技术公司。目前公司拥有一整套以实时金融风险监控产品为主线的高性能解决方案,服务领域囊括第三方支付、互联网金融、银行、外汇、证券、基金、保险等行业,是国内金融风控行业领军者。
邦盛金融副总经理王昊一在签约仪式上表示,徽商银行作为较早布局互联网金融领域的传统金融机构,选择邦盛作为合作伙伴,是出于对未来发展的判断,更是对我们的一种信任。邦盛金融此次提供的授信决策产品包括申请欺诈风险侦测模型和授信模型两部分内容,除此之外邦盛还将为徽商银行的互联网消费金融业务提供风控咨询服务。
未来,双方将进一步在互联网反欺诈、实时风控、模型研发、数据挖掘等相关领域深化合作,将“科技+金融”的组合最大化,让技术为传统金融机构的转型插上翅膀。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27