
大数据风控助力徽常有财发展
12月13日,杭州邦盛金融信息技术有限公司与徽商银行直销银行“徽常有财”在合肥举行签约仪式。这意味着“徽常有财”将正式启用邦盛金融的授信决策产品,以减少银行互联网信贷业务面临的欺诈风险,同时利用大数据技术提高互联网信贷业务的效率。
直销银行兴起于上世纪90年代末,是传统银行在互联网时代布局的一种新型银行运作模式。它打破了时空的限制,极大地拓展了传统银行的生存空间。但与此同时,直销银行所面临的风险也不可小觑,除了传统金融的业务风险外,还有互联网金融的技术类风险。比如银行线上授信类业务即可能面临多重欺诈风险,这其中包括逾期信用风险、本人伪造欺诈风险、他人伪造欺诈风险以及团队/中介欺诈风险等等。如何快速识别欺诈风险,同时利用技术手段提高整体运营效率,这将是传统银行在互联网金融浪潮中继续保持竞争力所面临的重大挑战之一。
而这正是邦盛金融成立后用整整四年时间来研究的一件事。传统的授信业务是线下进行的,申请授信的人与银行的人要面对面,提交银行要求的各种材料,银行要对材料的真伪进行核实,包括现场核实。互联网授信业务是在线上进行的,申请授信的人与银行的人不是面对面的,因此互联网授信业务极大提升效率的同时,也带来了巨大风险。邦盛金融的互联网授信决策产品应运而生。简单来说,就是在用户申请的环节,识别欺诈的风险;在授信的环节,通过海量数据,包括人行征信数据,电商数据,运营商数据,社保缴费数据,等等十几个维度的数据优化成的模型做评分,从而决定授信额度,而这一切都是秒级完成,通过分析海量数据实现的。“我们所做的,就是不断通过大数据技术的处理能力,综合各方面的数据提高银行互联网授信业务的的整体效率与最终客户体验。”邦盛金融副总经理王昊一如此表述。
不同于目前市场上其他的金融风控产品方案,邦盛金融的授信决策产品具有全业务场景支持调用、全生命周期风险管理、全自动化审批决策、全授权数据采集以及全数据清洗加工等五大特点,所有方案都是基于客户定制开发的本地化规则模型,全方位、多角度地为其提供超一流的技术体验。
徽商银行电子银行部总经理助理王涛表示,“邦盛金融在互联网反欺诈、实时风控、大数据应用以及底层技术实现等方面具有丰富的实施经验,因此,“徽常有财”选择与邦盛金融一起,携手拓展互联网消费信贷业务。”
成立于2010年,邦盛金融是国内最早从事事中反欺诈技术研究与应用的企业,同时也是目前少数拥有自主产权底层平台的技术公司。目前公司拥有一整套以实时金融风险监控产品为主线的高性能解决方案,服务领域囊括第三方支付、互联网金融、银行、外汇、证券、基金、保险等行业,是国内金融风控行业领军者。
邦盛金融副总经理王昊一在签约仪式上表示,徽商银行作为较早布局互联网金融领域的传统金融机构,选择邦盛作为合作伙伴,是出于对未来发展的判断,更是对我们的一种信任。邦盛金融此次提供的授信决策产品包括申请欺诈风险侦测模型和授信模型两部分内容,除此之外邦盛还将为徽商银行的互联网消费金融业务提供风控咨询服务。
未来,双方将进一步在互联网反欺诈、实时风控、模型研发、数据挖掘等相关领域深化合作,将“科技+金融”的组合最大化,让技术为传统金融机构的转型插上翅膀。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15