
传统媒体大数据转型的优与忧
当下传统媒体正深陷困境,其根源在于受众大量流失所导致的用户连接失效,那么如何重建用户连接呢?2014年8月18日提出的《关于推动传统媒体和新兴媒体融合发展的指导意见》给出了答案,即充分利用大数据技术来实现传统媒体的赶超。转眼间近两年过去了,传统媒体的大数据转型进展如何呢?7月14日,首届中国大数据应用大会期间,由封面传媒承办的“大数据与媒体联接力论坛”最为引人关注,这给我们提供了一个观察传统媒体大数据转型现状的机会。
优:转型先行者已开始收获
封面传媒董事长兼首席执行官李鹏在主题演讲中指出:数据为王的时代已经到来,依靠大数据技术产生内容,给传统媒体和新闻生产带来了很大机遇。继而指出,未来的联接力出现了这么几种状态:一是连接需求,打通消费;二是连接参与,开放众包;三是连接虚拟,沉浸参与。因此,个性化、标签化、用户的精准化等“三化”,成了封面传媒的重要特征。
封面传媒致力于重新联接世界,植根于“80后”和“90后”网络原住民的精神需求,依托大数据、人工智能和虚拟现实等前沿技术的应用能力驱动新型的内容创造,以新型内容为内核,重新定义人与信息、人与商品、人与服务以及人与人的连接方式,打造跨媒体、电商和文娱的泛内容生态平台。简而言之,封面传媒是一个以技术为驱动、以用户为中心、以内容为纽带的泛内容生态平台,目前已经拿到国家网信办颁发的互联网新闻信息服务许可证,也是全国拿到该许可证的第二家新闻客户端。可以看出,封面传媒从用户痛点出发,致力于利用大数据技术,通过千人千面的新闻重建用户连接并实现自身商业价值的变现。
浙报传媒深刻认识到大数据的潜力和重建用户连接的价值,先是通过31.9亿元收购边锋和浩方,获得了数以亿计的互联网用户,有效地建立了用户连接,目前两家游戏公司的营业收入已经占到浙报传媒营业收入的30%以上,净利润的一半以上;再通过打造“媒立方”这一基于大数据技术的智能生产和传播平台,以积累更多的数据并对数据进行标签化;最后再定增20亿元,用于建设互联网数据中心和大数据交易中心,通过打通内外部数据资源,实现真正的“大数据”。可以毫不夸张地说,浙报传媒是国内所有利用大数据进行转型的传统媒体中取得实效最大的。
忧:转型遇难题表现较突出
目前我们已经从IT时代进入到了DT时代,在DT时代,互联网是骨骼,大数据则是血液,二者共同构成社会的底层架构和社会操作系统。对于传统媒体来说,应该高度重视大数据这一代表未来趋势的新生事物,把大数据当成超越自身的利器,通过“互联网 ”“大数据 ”,实现自身的彻底转型。虽然大数据作为新生事物,从某种程度上说,在利用大数据方面,传统媒体和互联网媒体都处于同一起跑线上。但大数据的核心在于数据,大数据具有海量、高频、在线、实时等特点。因此,对于传统媒体来说,相比于互联网媒体,传统媒体在运用大数据的过程中存在着数据资源不足、数据平台欠缺和缺乏有竞争力的数据产品三大难题,导致自身有可能错失大数据这一巨大机遇。
首先,缺乏充足的数据资源。对于媒体来说,可能获得的数据资源包括新闻内容数据、素材数据、历史数据、媒资数据、用户资产数据、用户行为数据、生产流程数据、内容传播数据、媒体云数据、互联网新闻数据等。传统媒体目前只有数量极少的数据,根本还谈不上大数据。一是自身数据资源太少。所谓大数据,数据的数量必须大,而对于绝大多数传统媒体来说,其主要数据资源还仅仅是内部的新闻内容数据、历史数据和媒资数据等,而缺乏用户数据、网络行政数据和政府数据等,导致自身的数据资源量极其有限。二是自身数据多是静态数据。由于传统媒体缺乏规模巨大的互联网平台,其新闻内容、受众数据等都是基于传统媒体的,由于缺乏有效的互动和非即时性,也导致这些数据多是频率很低、静态的数据。三是缺乏用户数据。传统媒体虽然有一定数量的受众数据,但是由于这些受众数据的频率低且没有经过精准画像,导致自身只有受众而没有真正的用户。
因此,传统媒体首先要想方设法获取足够多的数据资源:一是利用自身的政治资源,尽可能地获取网络行政、政府数据等高价值的数据资源,这是传统媒体进军大数据的一条重要途径;二是建立起自身的用户体系,以逐步变受众数据为用户数据;三是尽快把现有静态的存量内容资源转变为动态的、互动的数据资源。
其次,缺少用户巨大的大数据平台。传统媒体要想真正建立起属于自己的大数据,其前提是必须打造数据充足、技术先进、用户活跃的大数据资源平台、智能生产和传播平台以及用户沉淀平台三大平台。
传统媒体在打造大数据平台时,面临三大制约:一是思维和观念陈旧,基本上还是基于现有资源和优势,而不是基于未来和趋势,导致多是基于内部媒体数据,而不是基于整体的数据资源;二是缺乏先进的技术支持,由于传统媒体的技术力量薄弱,一方面自己没有实力搭建起三大平台,另一方面技术外包又存在迭代太慢的问题;三是需要大量的资金,三大平台的建设加上配套服务器所需资金最低也要3000万元以上,而多的则需要数亿元。
当前,国家提出了国家大数据工程,各地政府正在大力推进智慧城市建设和政府数据开放工程,传统媒体应该积极利用自身的政治优势把自身的三大平台建设纳入政府的智慧城市建设中,建立起大数据平台和区域内的数据交易平台。这么做的优势在于:一是站在整个区域的大数据发展的基础上;二是可以借助政府智慧城市的建设工程来解决自身的技术和资金问题;三是可以获取政府的数据资源。
再次,缺少有竞争力的大数据产品。打造成功的大数据产品需要注重如下三点:一是以用户需求为导向。在对用户进行精准画像的基础上,利用大数据手段找出用户的痛点和需求,进而基于用户的需求来开发产品。二是实现业务人员、数据人员和技术人员的“混”。当前,一方面懂业务的不懂技术和数据,懂技术和数据的又不懂业务;另一方面业务、技术和数据人员相互割裂,甚至互相看不起或不理解,这导致难以有效地开展工作,而要解决这个问题,首要就是要实现他们之间的“混”,即协同办公。三是实现业务、数据和技术之间的“通”。大数据产品一定是业务、数据和技术三者之间的协同互通,只有三者之间相互理解、相互熟悉、相互帮助,才能真正开发出有竞争力的大数据产品,在具体运作中,可以设立数据产品经理来解决这个难题。
在大数据时代,充分利用智慧城市建设和政府数据开放来搭建自身的三大平台和开放大数据产品,是传统媒体转型的最后一次机遇,一旦丧失这次机会,也许就只有彻底沦陷一途了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01