京公网安备 11010802034615号
经营许可证编号:京B2-20210330
商业银行利用大数据参与共享经济的探索与实践
商业银行要在“去中介化”的共享经济形态中维护金融中介的重要地位,核心问题在于充分参与共享经济,发挥大数据应用优势,从共享大数据、共享大数据产品及模型、共享大数据云平台三方面着手,巩固信息中介的地位。
第三次工业革命时代,新的经济范式“共享经济”诞生,其核心是互联网、物联网及其带来的大数据,为人类近乎免费的即时协同提供了可能。如何在“去中介化”的共享经济形态中维护金融中介的重要地位,是商业银行普遍面临的难题。银行作为重要的金融中介,在传统金融中更多发挥了融资中介的作用,而在大数据时代,银行应向信息中介转型。
共享经济挑战商业银行传统的金融中介模式
共享经济(Sharing Economy)或称分享经济,也称为协作型消费(Collaborative Consumption),不仅是经济学问题,更是社会学问题。最早提出共享经济理论的是经济学家马丁•威茨曼(1984),该理论的提出主要为了解决西方长期存在的“滞涨”问题,发挥共享经济对付失业、生产停滞和价格上涨的“自动稳定器”和“自动吸尘器”作用。事实上,共享概念早已有之。传统社会,朋友之间借书或共享一条信息、包括邻里之间互借东西,都是共享的形式。但这种共享受制于空间、关系两大要素,且需要有双方的信任关系才能达成。
移动互联网时代,共享、特别是信用大数据的共享,将会极大地提升整个金融体系的融资效率。共享经济是一个去中介化的过程。通过大数据共享,信息获得更加充分,金融资源将不再是少数人拥有的特权,大数据对社会的变革将发挥决定性作用。美国社会学家杰里米•里夫金(2014)在《零边际成本社会》中提出,第三次工业革命带来的零边际成本和共享经济,将会在未来终结资本主义的经济形态。物联网将把这个世界上的一切,人、物、生产、物流等“连接”起来,不断为各个节点(商业、家庭、交通工具)提供实时大数据,同时大数据经过分析转化为精确的预测,这种连接将世界变成一个大网络。协同共享带来的创新正孕育着一种新的激励机制,新一代将更在意使用权而不是所有权,它更多地是基于提高人类社会福利的期望,而不那么重视物质回报。可穿戴设备之父彭特兰(Alex Pentland,2014)从社会物理学角度提出,参与能够增加信任并增加关系的价值,这为构建合作行为所需要的社会压力奠定了基础。
货币金融学家米什金(1995)曾经指出,金融中介的存在主要有两个原因:第一,金融中介有规模经济和专门技术,能降低资金融通的交易成本;第二,金融中介有专门的信息处理能力,能够缓解储蓄者和融资者之间的信息不对称以及由此引发的逆向选择和道德风险问题。因此,资金中介和信息中介是商业银行作为金融中介最为基础的两个功能。
在共享经济“去中介化”的时代背景下,作为重要金融中介的商业银行应如何生存,是一个前沿性的课题。对此,工商银行前董事长姜建清认为,互联网技术革命让商业银行进入一个重要的转折点,即从过去的支付和融资中介向综合化信息中介服务转变,信息是银行发展的深层基础和根本,能不能在未来竞争中保持优势,关键在于能不能成为信息掌握的强者,并采取措施通过大数据技术重新发展和铸造新的金融经济关系。
大数据在银行领域应当发挥更加核心的作用
2015年以来,在“互联网+”浪潮和我国顶层制度设计的推动下,大数据技术及服务快速发展,各种网络金融、数据服务公司、第三方征信机构层出不穷。数据已经被认定为国家战略资源,我们要充分认识到数据在共享的时候价值更大。
在金融行业中,数据以往已经发挥了重要的作用。不论发达国家金融市场的证券基金业、发展中国家的传统信贷领域,还是近来谈论的热门——征信行业,数据都为业务发展提供必不可少的基础支撑作用。在大数据行业中,金融领域的大数据应用也一直走在技术和服务的前列。比如美国的Zestfinance、Lending Club等新兴互联网企业,以及中国人民银行授权的8家征信公司。目前从事金融大数据业务的企业主要有四种类型:一是做平台,代表企业主要是阿里、腾讯;二是做产业链,代表企业有金电联行、融360、闪银(Wecash)等;三是主攻征信,主要代表是8家持牌征信公司(芝麻信用、腾讯征信、深圳前海征信、鹏元征信、中诚信征信、中智诚征信、拉卡拉信用管理有限公司和北京华道征信);四是提供数据及其相关服务,代表企业有九次方、百分点、万得、数据堂等。这些企业或多或少都参与了共享经济模式,与平台企业、产业链企业或是其他数据公司分享、互换数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15