
如何加快健康医疗大数据发展的步伐
就在英国脱欧公投赚足眼球的时候,一部有可能对中国健康大数据、互联网医疗的发展产生深远影响的政府政策正式公布——国务院办公厅印发的《关于促进和规范健康医疗大数据应用发展的指导意见》。
国家给健康大数据的定性:
健康医疗大数据是国家重要的基础性战略资源。健康医疗大数据应用发展将带来健康医疗模式的深刻变化,有利于激发深化医药卫生体制改革的动力和活力,提升健康医疗服务效率和质量,扩大资源供给,不断满足人民群众多层次、多样化的健康需求,有利于培育新的业态和经济增长点。
发展目标有两个时间节点:
到2017年底,实现国家和省级人口健康信息平台以及全国药品招标采购业务应用平台互联互通,基本形成跨部门健康医疗数据资源共享共用格局;
到2020年,建成国家医疗卫生信息分级开放应用平台,实现与人口、法人、空间地理等基础数据资源跨部门、跨区域共享,医疗、医药、医保和健康各相关领域数据融合应用取得明显成效;统筹区域布局,依托现有资源建成 100 个区域临床医学数据示范中心。
重点任务包括四个方面:
①夯实健康医疗大数据应用基础。应用基础包括两个:一个是政府层面的,依托国家电子政务外网和统一数据共享交换平台建立的人口健康信息平台;另一个是医疗服务层面的,这部分值得重视。
国家在医疗服务层面的大数据应用基础规划了几个方面:
医疗机构-关键词是采集、存储、应用、保障和共享;
基础数据库-核心是电子健康档案、电子病历、电子处方等,不过文件没有明确提出这个基础数据库谁来建、怎么建,从上下文看,似乎还是医疗机构的任务;
健康医疗数据共享机制;
探索互联网医疗数据接入人口健康信息平台-对所有具备数据采集能力的靠谱互联网医疗企业而言,终于看到了一点希望;
建立全国健康医疗数据资源目录体系,制定分类、分级、分域健康医疗大数据开放应用政策规范-值得引起高度重视。
②深化健康大数据应用。应用包括几个方面:行业治理、临床科研、公共卫生、新业态以及智能医疗设备。前三个领域都会有商业机会存在,之前已经有一些创业公司在做,而这里重点看一下后两个部分的论述。
新业态包括几个方面:数据存储清洗、分析挖掘、安全隐私保护等关键技术攻关;健康服务业与大数据技术深度融合;发展居家健康信息服务;规范网上药店和医药物流第三方配送等服务,以及若干类服务。
智能医疗设备,国家表态将支持研发健康医疗相关的人工智能技术、生物三维(3D)打印技术、医用机器人、大型医疗设备、健康和康复辅助器械、可穿戴设备以及相关微型传感器件。
③规范和推动 “互联网 + 健康医疗” 服务。内容包括智慧健康医疗便民惠民服务、全面建立远程医疗应用体系、推动健康医疗教育培训应用。应该说,这部分内容既是对过往互联网医疗发展的肯定,同时又给出了明确的发展方向。
首先,发挥优质医疗资源的引领作用,鼓励社会力量参与,整合线上线下资源,规范医疗物联网和健康医疗应用程序(APP)管理,大力推进互联网健康咨询、网上预约分诊、移动支付和检查检验结果查询、随访跟踪等应用,优化形成规范、共享、互信的诊疗流程。
第二,值得重视的是,以家庭医生签约服务为基础,推进居民健康卡、社会保障卡等应用集成,激活居民电子健康档案应用,推动覆盖全生命周期的预防、治疗、康复和健康管理的一体化电子健康服务。也就是说,如何将互联网医疗与家庭医生签约服务结合起来,将至关重要。
第三,国家提出了“健康中国云服务计划”,而这个云服务计划包括提供远程会诊、远程影像、远程病理、远程心电诊断服务,健全检查检验结果互认共享机制。
④加强健康医疗大数据保障体系建设,包括规范、诚信、法规、人才四个方面。
在组织实施方面的几个内容特别值得重视,这是国家未来要在健康大数据这个领域要重点做的内容和方向:
从人民群众迫切需求的领域入手,重点推进网上预约分诊、远程医疗和检查检验结果共享互认等便民惠民应用;
加快推进基本医保全国联网和异地就医结算;
支持发展医疗智能设备、智能可穿戴设备,加强疑难疾病等重点方面的研究;
鼓励和引导社会资本参与健康医疗大数据的基础工程、应用开发和运营服务;
探索通过政府采购、社会众包等方式,实现健康医疗大数据领域政府应用与社会应用相融;
充分发挥已设立的有关投资基金作用,充分激发社会资本和民间资本参与热情,鼓励创新多元投资机制。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08