京公网安备 11010802034615号
经营许可证编号:京B2-20210330

CDAS2016中国数据分析师行业峰会圆桌会议环境,众多数据科学界的专家针对数据分析师行业的人才发展展开了交流和讨论。
专家们一致认为不管在国内还是在国外,数据科学家都是稀缺资源。而要成为数据科学家,首先要成为优秀的分析师。
IBM大数据大学首席数据科学家Saeed Aghabozorgi认为,数据科学家有多年数据分析的经验,可以回答管理者的问题,帮助管理者进行决策,提供决策依据报告;但数据分析师的工作相对简单,可以每日接触数据,如果有必要创立新的算法,也可以做算法方面的研发,“数据分析师可能是初级的数据科学家”。
不管是数据分析师还是数据科学家,对数据的深刻理解离不开对业务的深入认识。对此,CDA数据分析研究院院长常国珍介绍,CDA数据分析师在建立之初就比较偏重于业务,在逐步建立课程体系的过程当中,也注重引入企业案例课程,培养数据分析师的实战能力。
那么,如何从小白一步步进阶成为数据科学家呢?
纽约时报的一篇文章告诉我们,成为数据科学家真的是很简单的事情。在修完几门数据科学的课之后,一个做web开发的创业公司,就会因为你的新技能,高薪聘请你了。然后出任CEO,迎娶白富美。
首先,知己知彼,方能百战而不怠,数据科学家作为企业运营发展的贤内助和灵魂人物,他的技能构成是:
然后,我们深入企业,了解企业中心团队的人员构成:
20%:IT团队
Task:数据仓库和数据管理;仪表盘和业务指标;KPI设计级标准;特定的管理信息系统
30%:业务团队
Task:生成营销活动清单,确定规模;测试、控制和维护;营销活动部署;设计营销方案;联络策略
50%:分析团队
Task:数据探索与假设检验;制定损益标准;数据驱动业务分析;营销活动设计;建议、评估和优化。
企业分析人员的成长路径:
最后,看你骨骼惊奇,送你一套数据科学家的学习资源:
1. IBM大数据大学(BDU)该平台提供了一些免费的在线学习课程,同时也提供了解决真实数据应用问题的方案。如R,Python,OpenRefine。CDA数据分析师也和BDU达成深度合作,同时CDA系列的第一门课程:《数据挖掘导论》也已经在IBM大数据大学上面正式发布。可以通过传送门感受:https://bigdatauniversity.com.cn/courses/introduction-data-mining/
2. Coursera是最大的在线公开课平台之一,其中有很多都是和数据科学相关。
如:杜克大学的“精通Excel数据分析”;密歇根大学的“大家一起,从0开始学Python”; 约翰霍普金斯大学的R编程。ETC…大家可以自己去挖掘。
3. CDA数据分析师致力于传播优质的教学资源,官网公开SPSS,Python,R等公开视频资源可供免费观看:https://www.cda.cn/shipin.html 未来也会逐渐开放更多的免费资源供大家学习观看。
如果你是一个很有自律性的人类生物,你可以通过参加以上课程和更多开放的资源来get到数据科学相关技能。
当然,资源多有时候也是一种问题,面对如此眼花缭乱的课程和分类,我该如何选择?一个人学习遇到问题无法解决?我需要同行的伴侣一起学习进步?
CDA数据分析师Level I课程,带你从业务数据分析开始,稳扎稳打,带你有组织有纪律的走上你的数据科学家之路!
培训信息
北京海淀&远程(SAS EG):9月24~10月30(8天)
北京朝阳(SPSS):10月29~11月20(8天)
授课安排:现场班6900元,远程班4900元
(1) 授课方式:面授直播两种形式,中文多媒体互动式授课方式
(2) 授课时间:上午9:00-12:00,下午13:30-16:30,16:30-17:00(答疑)
(3) 学习期限:现场与视频结合,长期学习加练习答疑。
报名流程
1. 在线填写报名信息

2. 给予反馈,确认报名信息
3. 网上缴费
4. 开课前一周发送电子版课件和教室路线图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29